Skip to main content
Log in

Positive solutions of Schrödinger equations and fine regularity of boundary points

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

An Erratum to this article was published on 24 April 2012

Abstract

Given a Lipschitz domain Ω in \({{\mathbb R}^N}\) and a nonnegative potential V in Ω such that V(xd(x, ∂Ω)2 is bounded we study the fine regularity of boundary points with respect to the Schrödinger operator L V := Δ − V in Ω. Using potential theoretic methods, several conditions are shown to be equivalent to the fine regularity of \({z \in \partial \Omega}\) . The main result is a simple (explicit if Ω is smooth) necessary and sufficient condition involving the size of V for \({z \in \partial \Omega}\) to be finely regular. An intermediate result consists in a majorization of \({\int_A \vert{\frac{ u} {d(.,\partial \Omega)}}\vert^2\, dx}\) for u positive harmonic in Ω and \({A \subset \Omega}\). Conditions for almost everywhere regularity in a subset A of ∂Ω are also given as well as an extension of the main results to a notion of fine \({\mathcal{ L}_1 \vert \mathcal{L}_0}\)-regularity, if \({\mathcal{L}_j = \mathcal{L} - V_j, V_0,\, V_1}\) being two potentials, with V 0 ≤ V 1 and \({\mathcal{L}}\) a second order elliptic operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona A.: Principe de Harnack à la frontière et Théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien. Ann. Inst. Fourier (Grenoble) 28(4), 169–213 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ancona A.: Régularité d’accès des bouts et frontière de Martin d’un domaine euclidien. J. Math. Pures App. 63, 215–260 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Ancona A.: Negatively curved manifolds, elliptic operators, and the Martin boundary. Ann. Math. (2) 125(3), 495–536 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ancona, A.: Positive harmonic functions and hyperbolicity. In: Potential Theory—Surveys and Problems (Prague, 1987), pp. 1–23. Lecture Notes in Math., vol. 1344. Springer, Berlin (1988)

  5. Ancona, A.: Théorie du Potentiel sur les graphes et les variétés. Ecole d’été de Probabilités de Saint-Flour XVIII—1988, 1–112. Lecture Notes in Math., vol. 1427. Springer, Berlin (1990)

  6. Ancona A.: On strong barriers and an inequality of Hardy for domains in R n. J. Lond. Math. Soc. (2) 34(2), 274–290 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ancona, A.: Un critère de nullité de k V (., y). Manuscrit Avril 2005

  8. Bonk, M., Heinonen J., Koskela, P.: Uniformizing Gromov hyperbolic spaces. Astérisque 270 (2001)

  9. Brelot, M.: Eléments de la théorie classique du potentiel, 3e édition. Les cours de Sorbonne. 3e cycle. Centre de Documentation Universitaire, Paris (1965)

  10. Brelot, M.: Axiomatique des fonctions harmoniques. Les Presses de l’Université de Montréal (1969)

  11. Dahlberg B.E.J.: Estimates of harmonic measure. Arch. Ration. Mech. Anal. 65(3), 275–288 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doob, J.L.: Classical potential theory and its probabilistic counterpart. Reprint of the 1984 edition. Classics in Mathematics. Springer, Berlin (2001)

  13. Dynkin E.B.: A new relation between diffusions and superdiffusions with applications to the equation Lu = u α. C. R. Acad. Sci. Paris Sér. I Math. 325(4), 439–444 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dynkin E.B.: Diffusions, Superdiffusions and partial differential equations. A.M.S. Colloquium Publications, vol. 50. A.M.S., Providence (2002)

    Google Scholar 

  15. Dynkin E.B.: Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations. University Lecture Series, vol. 34. A.M.S., Providence (2004)

    Google Scholar 

  16. Dynkin E.B., Kuznetsov S.E.: Fine topology and fine trace on the boundary associated with a class of semilinear differential equations. Commun. Pure Appl. Math. 51(8), 897–936 (1998)

    Article  MathSciNet  Google Scholar 

  17. Hunt R.A., Wheeden R.L.: On the boundary values of Harmonic functions. Trans. Am. Math. Soc. 132, 307–322 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hunt R.A., Wheeden R.L.: Positive harmonic functions on Lipschitz domains. Trans. Am. Math. Soc. 147, 507–527 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kadlec J., Kufner A.: Characterization of functions with zero traces by integrals with weight functions. I. Časopis Pěst. Mat. 91, 463–471 (1966)

    MathSciNet  MATH  Google Scholar 

  20. Le Gall J.F.: The Brownian snake and solutions of Δu = u 2 in a domain. Probab. Theory Relat. Fields 102(3), 393–432 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marcus M., Véron L.: Removable singularities and boundary traces. J. Math. Pures Appl. 80, 879–900 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Marcus M., Véron L.: The boundary trace and generalized boundary value problem for semilinear elliptic equations with a strong absorption. Commun. Pure Appl. Math. 56, 689–731 (2003)

    Article  MATH  Google Scholar 

  23. Marcus M., Véron L.: The precise boundary trace of positive solutions of the equation Δu = u q in the supercritical case. Contemp. Math. 446, 345–383 (2007)

    Article  Google Scholar 

  24. Marcus, M., Véron, L.: Capacitary estimates of positive solutions of semilnear elliptic equations with absortions. J. Eur. Math. Soc. 6, 483–527

  25. Marcus, M., Véron, L.: Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case. ArXiv:0907.1006v3 (submitted)

  26. Mselati, B.: Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation. Mem. Am. Math. Soc. 168, no. 798 (2004)

    Google Scholar 

  27. Martin R.S.: Minimal positive harmonic functions. Trans. Am. Math. Soc. 49, 137–172 (1941)

    Article  Google Scholar 

  28. Naïm L.: Sur le rôle de la frontière de R. S. Martin dans la théorie du Potentiel. Ann. Inst. Fourier 7, 183–281 (1957)

    Article  MATH  Google Scholar 

  29. Stampacchia G.: Formes bilinéaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  30. Stampacchia G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15(1), 189–258 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stein, E.M.: Singular integrals and differentiability properties of functions. In: Princeton Math. Series, No. 30. Princeton University Press, Princeton (1970)

  32. Véron, L., Yarur, C.: Boundary values problems for elliptic equations with singular potentials. Appendix by A. Ancona. J. Funct. Anal. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alano Ancona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ancona, A. Positive solutions of Schrödinger equations and fine regularity of boundary points. Math. Z. 272, 405–427 (2012). https://doi.org/10.1007/s00209-011-0940-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0940-5

Mathematics Subject Classification (2000)

Navigation