Skip to main content
Log in

Geodesic diameter of sets defined by few quadratic equations and inequalities

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove a bound for the geodesic diameter of a subset of the unit ball in \({\mathbb{R}^n}\) described by a fixed number of quadratic equations and inequalities, which is polynomial in n, whereas the known bound for general degree is exponential in n. Our proof uses methods borrowed from D’Acunto and Kurdyka (to deal with the geodesic diameter) and from Barvinok (to take advantage of the quadratic nature).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev A.A.: The topology of quadratic mappings and Hessians of smooth mappings. J. Soviet Math. 49, 990–1013 (1990)

    Article  MATH  Google Scholar 

  2. Barvinok A.I.: On the Betti numbers of semialgebraic sets defined by few quadratic inequalities. Math. Zeit. 225, 231–244 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basu S.: Computing the top Betti numbers of semi-algebraic sets defined by quadratic inequalities in polynomial time. Found. Comput. Math. 8, 45–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basu S., Kettner M.: A sharper estimate on the Betti numbers of sets defined by quadratic inequalities. Discrete Comput. Geom. 39, 734–746 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basu S., Pasechnik D., Roy M-F.: Computing the Betti numbers and the Euler-Poincare characteristic of semi-algebraic sets defined by partly quadratic systems of polynomials. J. Algebra 321, 2206–2209 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Basu S., Pasechnik D., Roy M-F.: Bounding the Betti numbers of semi-algebraic sets defined by partly quadratic systems of polynomials. J. Eur. Math. Soc. 12, 529–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Basu, S., Pollack, R., Roy, M-F.: Algorithms in real algebraic geometry. Springer, Berlin (2006). http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted1.pdf

  8. Coste, M.: An introduction to semialgebraic geometry (2002). http://perso.univ-rennes1.fr/michel.coste/polyens/SAG.pdf

  9. D’Acunto, D., Kurdyka, K.: Bounds for gradient trajectories of polynomial and definable functions with applications. Preprint (2004). http://www.lama.univ-savoie.fr/~d_acunto/dacunto-kurdyka1.pdf

  10. D’Acunto D., Kurdyka K.: Bounds for gradient trajectories and geodesic diameter of real algebraic sets. Bull. Lond. Math. Soc. 38, 951–965 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Degtyarev, A., Itenberg, I., Kharlamov, V.: On the number of components of a complete intersection of real quadrics. arXiv:0806.4077

  12. Grigoriev D., Pasechnik D.: Polynomial-time computing over quadratic maps. I. Sampling in real algebraic sets. Comput. Complex. 14, 20–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guillemin V., Pollack A.: Differential topology. Prentice Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  14. Moussa S.: Bornes pour le diamètre géodésique d’une composante connexe d’un ouvert semi-algébrique. Bull. Sci. Math. 132, 70–77 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moussa, S.: Aspects quantitatifs des ensembles semi-algébriques. Thesis UAM Niamey, Université Rennes 1 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Coste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coste, M., Moussa, S. Geodesic diameter of sets defined by few quadratic equations and inequalities. Math. Z. 272, 239–251 (2012). https://doi.org/10.1007/s00209-011-0931-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0931-6

Mathematics Subject Classification (2000)

Navigation