Skip to main content

Advertisement

Log in

Computations of the orbifold Yamabe invariant

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the Yamabe invariant of a compact orbifold with finitely many singular points. We prove a fundamental inequality for the estimate of the invariant from above, which also includes a criterion for the non-positivity of it. Moreover, we give a sufficient condition for the equality in the inequality. In order to prove it, we also solve the orbifold Yamabe problem under a certain condition. We use these results to give some exact computations of the Yamabe invariant of compact orbifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akutagawa K.: Yamabe metrics of positive scalar curvature and conformally flat manifolds. Diff. Geom. Appl. 4, 239–258 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akutagawa K., Botvinnik B.: Yamabe metrics on cylindrical manifolds. Geom. Funct. Anal. 13, 259–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akutagawa K., Botvinnik B.: The Yamabe invariants of orbifolds and cylindrical manifolds, and L 2-harmonic spinors. J. Reine Angew. Math. 574, 121–146 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akutagawa K., Florit L.A., Petean J.: On Yamabe constants of Riemannian products. Commun. Anal. Geom. 15, 947–969 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Akutagawa K., Neves A.: 3-manifolds with Yamabe invariant greater than that of \({\mathbb{RP}^3}\) . J. Diff. Geom. 75, 359–386 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Ammann, B., Dahl, M., Humbert, E.: Smooth Yamabe invariant and surgery. 3, (2008). arXiv:math.DG/ 08041418

  7. Anderson M.T.: Canonical metrics on 3-manifolds and 4-manifolds. Asian J. Math. 10, 127–163 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Aubin T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  9. Aubin T.: Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics. Springer, Berllin (1998)

    Google Scholar 

  10. Besse A.: Einstein Manifolds. Springer, Berlin (1987)

    MATH  Google Scholar 

  11. Bray H., Neves A.: Classification of prime 3-manifolds with Yamabe invariant greater than \({\mathbb {RP}^3}\) . Ann. Math. 159, 407–424 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezis H., Lieb E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen X., LeBrun C., Weber B.: On conformally Kähler, Einstein manifolds. J. Am. Math. Soc. 21, 1137–1168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gromov M., Lawson H.B. Jr: The classification of simply connected manifolds of positive scalar curvature. Ann. Math. 111, 423–434 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gromov M., Lawson H.B. Jr: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Etudes Sci. Publ. Math. 58, 83–196 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gursky M., LeBrun C.: Yamabe invariants and spinc structures. Geom. Funct. Anal. 8, 965–977 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ishida M., LeBrun C.: Curvature, connected sums, and Seiberg–Witten theory. Commun. Anal. Geom. 11, 809–836 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Kobayashi, O.: On large scalar curvature. Research Report 11, Department of Mathematics, Keio University (1985)

  19. Kobayashi O.: The scalar curvature of a metric with unit volume. Math. Ann. 279, 253–265 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kobayashi R.: A remark on the Ricci curvature of algebraic surfaces of general type. Tohoku Math. J. 36, 385–399 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Koiso N.: On the second derivative of the total scalar curvature. Osaka J. Math. 16, 413–421 (1979)

    MathSciNet  MATH  Google Scholar 

  22. Kronheimer P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Diff. Geom. 29, 665–683 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Lawson H.B. Jr, Michelson M.L.: Spin Geometry. Princeton University Press, Princeton (1987)

    Google Scholar 

  24. LeBrun C.: Einstein metrics and Mostow rigidity. Math. Res. Lett. 2, 1–8 (1995)

    MathSciNet  MATH  Google Scholar 

  25. LeBrun C.: Four-manifolds without Einstein metrics. Math. Res. Lett. 3, 133–147 (1996)

    MathSciNet  MATH  Google Scholar 

  26. LeBrun C.: Yamabe constants and the perturbed Seiberg–Witten equations. Commun. Anal. Geom. 5, 535–553 (1997)

    MathSciNet  MATH  Google Scholar 

  27. LeBrun C.: Kodaira dimension and the Yamabe problem. Commun. Anal. Geom. 7, 133–156 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Lee J., Parker T.: Yamabe problem. Bull. Am. Math. Soc. 17, 37–81 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nakajima H.: Self-duality of ALE Ricci-flat manifolds and positive mass theorem. Recent topics in differential and analytic geometry. Adv. Stud. Pure Math. 18(I), 313–349 (1990)

    Google Scholar 

  30. Nicolaescu, L.: Notes on Seiberg–Witten theory. Graduate Studies in Mathematics, vol. 28. American Mathematical Society, Providence (2000)

  31. Petean J.: Computations of the Yamabe invariant. Math. Res. Lett. 5, 703–709 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Petean J.: The Yamabe invariant of simply connected manifolds. J. Reine Angew. Math. 523, 225–231 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Petean J., Yun G.: Surgery and the Yamabe invariant. Geom. Funct. Anal 9, 1189–1199 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schoen R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Diff. Geom. 20, 479–495 (1984)

    MathSciNet  MATH  Google Scholar 

  35. Schoen, R.: Recent progress in geometric partial differential equations. In: Proceedings of the International Congress of Mathematicians, Berkeley, California, 1986, pp. 121–130. American Mathematical Society, Providence (1987)

  36. Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Topics in Calculus of Variations, Lecture Notes in Mathematics, vol. 1365, pp. 121–154. Springer, Berlin (1989)

  37. Schoen R., Yau S.-T.: Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature. Ann. Math. 110, 127–142 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schoen R., Yau S.-T.: On the structure of manifolds with positive scalar curvature. Manuscr. Math. 28, 159–183 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schoen R., Yau S.-T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92, 47–71 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schoen, R., Yau, S.-T.: Lectures on differential geometry. In: Conference Proceedings and Lecture Notes in Geometry and Topology I. International Press, Cambridge (1994)

  41. Stolz, S.: Positive scalar curvature metrics—existence and classification questions. In: Proceedings of the International Congress of Mathematicians, Zürich, 1994, pp. 625–636. Birkhäuser, Basel (1995)

  42. Tian G., Viaclovsky J.: Moduli spaces of critical Riemannian metrics in dimension four. Adv. Math. 196, 346–372 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Trudinger N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22, 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  44. Viaclovsky, J.: Monopole metrics and the orbifold Yamabe problem. Ann. L’Institut Fourier (to appear)

  45. Yamabe H.: On a deformation of Riemannian structures on compact manifolds. Osaka J. Math. 12, 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Akutagawa.

Additional information

Supported in part by the Grants-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science, No. 21540097.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akutagawa, K. Computations of the orbifold Yamabe invariant. Math. Z. 271, 611–625 (2012). https://doi.org/10.1007/s00209-011-0880-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0880-0

Keywords

Navigation