Skip to main content
Log in

The Dirac–Witten operator on pseudo-Riemannian manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the Dirac–Witten operator for spacelike spin submanifolds in pseudo-Riemannian manifolds. When the normal bundles are spin and odd-dimensional, we derive new eigenvalue lower bounds. We also prove the generalized positive mass theorem using this operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballmann W., Bruning J., Carron G.: Regularity and index theory for Dirac–Schrödinger systems with Lipschitz coefficients. J. Math. Pures Appl. 89, 429–476 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bär C.: Extrinsic bounds of the Dirac operator. Ann. Glob. Anal. Geom. 16, 573–596 (1998)

    Article  MATH  Google Scholar 

  3. Bartnik R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 36, 661–693 (1986)

    Article  MathSciNet  Google Scholar 

  4. Bartnik R., Chrusćiel P.T.: Boundary value problems for Dirac-type equations. J. Reine Angew. Math. 579, 13–73 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudo-Riemannsche Mannigfaltigkeiten, Teubner-Verlag, Stuttgart/Leipzig, Band 41 (1981)

  6. Baum, H.: A remark on the spectrum of the Dirac operator on pseudo-Riemannian spin manifolds (1996) (preprint)

  7. Booß-Bavnvek B., Wojciechoski K.P.: Elliptic boundary problems for Dirac operators. Birkhäuser, Boston (1993)

    Book  Google Scholar 

  8. Chen D.: Eigenvalue estimates for the Dirac operator with generalized APS boundary condition. J. Geom. Phys. 57, 379–386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding L.: Positive mass theorems for higher dimensional Lorentzian manifolds. J. Math. Phys. 49, 022504 (2008)

    Article  MathSciNet  Google Scholar 

  10. Friedrich T.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannifaltigkeit nicht negativer Skalarkrümmung. Math. Nach. 97, 117–146 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ginoux N., Morel B.: Eigenvalue estimates for the submanifold Dirac operator. Int. J. Math. 13, 533–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hijazi O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and killing spinors. Commun. Math. Phys. 104, 151–162 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hijazi O., Montiel S., Roldán A.: Eigenvalue boundary problem for the Dirac operator. Commun. Math. Phys. 231, 375–390 (2002)

    Article  MATH  Google Scholar 

  14. Hijazi O., Montiel S., Zhang X.: Eigenvalues of the Dirac operator on manifolds with boundary. Commun. Math. Phys. 221, 255–265 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hijazi O., Montiel S., Zhang X.: Conformal lower bounds for the Dirac operator of embedded hypersurfaces. Asian J. Math. 6, 23–36 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Hörmander L.: The Analysis of Linear Partial Differential Operators III. Springer, Berlin (1985)

    MATH  Google Scholar 

  17. Hijazi O., Zhang X.: Lower bounds for the eigenvalues of the Dirac operator. Part I. The hypersuface Dirac operator. Ann. Global Anal. Geom. 19, 355–376 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hijazi O., Zhang X.: Lower bounds for the eigenvalues of the Dirac operator. Part II. The submanifold Dirac operator. Ann. Global Anal. Geom. 19, 163–181 (2001)

    Article  Google Scholar 

  19. Hijazi O., Zhang X.: The Dirac–Witten operator on spacelike hypersurfaces. Comm. Anal. Geom. 11, 737–750 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Morel B.: Eigenvalue estimates for the Dirac–Schrödinger operators. J. Geom. Phys. 38, 1–18 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Parker T., Taubes C.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84, 223–238 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Seeley R.T.: Complex powers of an elliptic operator. Proc. Sympos. Pure. Math. 10, 288–307 (1967)

    MathSciNet  Google Scholar 

  23. Schoen R., Yau S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schoen R., Yau S.T.: The energy and the linear momentum of spacetimes in general relativity. Commun. Math. Phys. 79, 47–51 (1981)

    Article  MathSciNet  Google Scholar 

  25. Schoen R., Yau S.T: Proof of the positive mass theorem II. Commun. Math. Phys. 79, 231–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Witten E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  MathSciNet  Google Scholar 

  27. Zhang X.: Lower bounds for eigenvalues of hypersurface Dirac operators. Math Res. Lett. 5, 199–210 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Zhang X.: A remark: lower bounds for eigenvalues of hypersurface Dirac operators. Math. Res. Lett. 6, 465–466 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Zhang X.: Positive mass conjecture for five-dimensional Lorentzian manifolds. J. Math. Phys. 40, 3540–3552 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang X.: Angular momentum and positive mass theorem. Commun. Math. Phys. 206, 137–155 (1999)

    Article  MATH  Google Scholar 

  31. Zhang X.: Positive mass theorem for hypersurface in 5-dimensional Lorentzian manifolds. Comm. Anal. Geom. 8, 635–652 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama Hijazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Hijazi, O. & Zhang, X. The Dirac–Witten operator on pseudo-Riemannian manifolds. Math. Z. 271, 357–372 (2012). https://doi.org/10.1007/s00209-011-0867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0867-x

Keywords

Navigation