Mathematische Zeitschrift

, Volume 271, Issue 1–2, pp 33–44 | Cite as

On the fundamental group of \({{\rm Hom}({\mathbb Z}^k,G)}\)

  • José Manuel Gómez
  • Alexandra Pettet
  • Juan Souto


Let G be a compact Lie group. Consider the variety \({{\rm Hom}({\mathbb Z}^{k},G)}\) of representations of \({{\mathbb Z}^k}\) into G. We can see this as a based space by taking as base point the trivial representation
. The goal of this paper is to prove that \({\pi_1({\rm Hom}({\mathbb Z}^k,G))}\) is naturally isomorphic to π1(G)k.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ádem, A., Cohen, F.R., Gómez, J.M.: Commuting elements in central products of special unitary groups. to appear in Proc. Edinburgh Math. Soc. Arxiv:math/0905.2895 [math.AT]Google Scholar
  2. 2.
    Baird T.: Cohomology of the space of commuting n-tuples in a compact Lie group. Algebr. Geom. Topol 7, 737–754 (2007)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Duistermaat J.J., Kolk J.A.C.: Lie Groups, Universitext. Springer, Berlin (2000)CrossRefGoogle Scholar
  4. 4.
    Goldman W.M.: Topological components of spaces of representations. Invent. Math. 93(3), 557–607 (1988)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Hofmann K.H., Morris S.A.: The Structure of Compact Groups. A Primer for the Student—A Handbook for the Expert. Second revised and augmented edition, de Gruyter Studies in Mathematics, vol. 25. Walter de Gruyter & Co, Berlin (2006)Google Scholar
  6. 6.
    Kac, V., Smilga, A.: Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. In: The Many Faces of the Superworld, pp. 185–234. World Science Publications, River Edge (2000)Google Scholar
  7. 7.
    Knapp, A.W.: Lie Groups Beyond an Introduction. Second Edition, Progress in Mathematics, vol. 140. Birkhäuser Boston, Inc., Boston (2002)Google Scholar
  8. 8.
    Pettet, A., Souto, J.: Commuting tuples in reductive groups and their maximal compact groups (in preparation)Google Scholar
  9. 9.
    Thom R.: Ensembles et morphismes stratifiés. Bull. Am. Math. Soc 75, 240–284 (1969)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Torres-Giese E., Sjerve D.: Fundamental groups of commuting elements in Lie groups. Bull. Lond. Math. Soc. 40(1), 65–76 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Whitney H.: Tangents to an analytic variety. Ann. Math. 81(2), 496–549 (1965)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • José Manuel Gómez
    • 1
  • Alexandra Pettet
    • 2
    • 3
  • Juan Souto
    • 2
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Department of MathematicsUniversity of MichiganAnn ArborUSA
  3. 3.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations