Skip to main content
Log in

Characterizing Artin stacks

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study properties of morphisms of stacks in the context of the homotopy theory of presheaves of groupoids on a small site

. There is a natural method for extending a property P of morphisms of sheaves on

to a property \({\mathcal{P}}\) of morphisms of presheaves of groupoids. We prove that the property \({\mathcal{P}}\) is homotopy invariant in the local model structure on

when P is stable under pullback and local on the target. Using the homotopy invariance of the properties of being a representable morphism, representable in algebraic spaces, and of being a cover, we obtain homotopy theoretic characterizations of algebraic and Artin stacks as those which are equivalent to simplicial objects in

satisfying certain analogues of the Kan conditions. The definition of Artin stack can naturally be placed within a hierarchy which roughly measures how far a stack is from being representable. We call the higher analogues of Artin stacks n-algebraic stacks, and provide a characterization of these in terms of simplicial objects. A consequence of this characterization is that, for presheaves of groupoids, n-algebraic is the same as 3-algebraic for all n ≥ 3. As an application of these results we show that a stack is n-algebraic if and only if the homotopy orbits of a group action on it is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin M.: Versal deformations and algebraic stacks. Invent. Math. 27, 165–189 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artin, M.: Algebraic spaces. James K. Whittemore Lecture in Mathematics given at Yale University, 1969. In: Yale Mathematical Monographs, vol. 3, vii+39 pp. Yale University Press, New Haven (1971)

  3. Behrend, K.: PhD thesis. http://www.math.ubc.ca/~behrend/thesis.html

  4. Borceux F.: Handbook of Categorical Algebra. University of Cambridge Press, Cambridge (1994)

    Book  Google Scholar 

  5. Dugger, D., Isaksen, D.: Weak equivalences of simplicial presheaves. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory. Contemp. Math., vol. 346, pp. 97–113. American Mathematical Society

  6. Dugger D., Hollander S., Isaksen D.: Hypercovers and simplicial presheaves. Math. Proc. Camb. Philos. Soc. 136(1), 9–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deligne P., Mumford D.: The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36, 75–109 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grothendieck, A.: Revêtements étales et groupe fondamental. In: Séminaire de Géométrie Algébrique du Bois Marie 1960–61 (SGA 1). Lecture Notes in Mathematics, vol. 224. Springer-Verlag, Berlin (1971)

  9. Hollander S.: A Homotopy Theory for Stacks. Isr. J. Math. 163, 93–124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hollander S.: Characterizing algebraic stacks. Proc. Am. Math. Soc. 136(4), 1465–1476 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hollander S.: Geometric criteria for Landweber exactness. Proc. Lond. Math. Soc. 99, 697–724 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hollander S.: Diagrams indexed by Grothendieck constructions. Homol. Homotopy Appl. 10(3), 193–221 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Knutson, D.: Algebraic spaces. In: Lecture Notes in Mathematics, vol. 203, vi+261 pp. Springer-Verlag, Berlin (1971)

  14. MacLane S., Moerdijk I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer-Verlag, Berlin Heidelberg New York (1992)

    Google Scholar 

  15. Pridham, J.P.: Presenting higher stacks as simplical schemes. arXiv:0905.4044

  16. Ravenel, D.: Complex cobordism and stable homotopy groups of spheres. In: Pure and Applied Mathematics, vol. 121, xx+413 pp. Academic Press, Orlando (1986)

  17. Simpson, C.: Algebraic (geometric) n-stacks. alg-geom/9609014

  18. Toen B., Vezzosi G.: Homotopical algebraic geometry II: geometric stacks and applications. Mem. Am. Math. Soc. 193(902), x+224 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Hollander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollander, S. Characterizing Artin stacks. Math. Z. 269, 467–494 (2011). https://doi.org/10.1007/s00209-010-0746-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0746-x

Mathematics Subject Classification (2000)

Navigation