Skip to main content
Log in

Pieri formulas for Macdonald’s spherical functions and polynomials

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We present explicit Pieri formulas for Macdonald’s spherical functions (or generalized Hall-Littlewood polynomials associated with root systems) and their q-deformation the Macdonald polynomials. For the root systems of type A, our Pieri formulas recover the well-known Pieri formulas for the Hall-Littlewood and Macdonald symmetric functions due to Morris and Macdonald as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baratta W.: Pieri-type formulas for nonsymmetric Macdonald polynomials. Int. Math. Res. Not. IMRN 2009, 2829–2854 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Bourbaki N.: Groupes et algèbres de Lie, Chapitres 4–6. Hermann, Paris (1968)

    Google Scholar 

  3. van Diejen J.F.: Commuting difference operators with polynomial eigenfunctions. Compositio Math. 95, 183–233 (1995)

    MathSciNet  MATH  Google Scholar 

  4. van Diejen J.F.: Self-dual Koornwinder-Macdonald polynomials. Invent. Math 126, 319–339 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. van Diejen J.F.: Scattering theory of discrete (pseudo) Laplacians on a Weyl chamber. Am. J. Math. 127, 421–458 (2005)

    Article  MATH  Google Scholar 

  6. van Diejen J.F., Ito M.: Difference equations and Pieri formulas for G 2 type Macdonald polynomials and integrability. Lett. Math. Phys. 86, 229–248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Komori Y., Noumi M., Shiraishi J.: Kernel functions for difference operators of Ruijsenaars type and their applications. SIGMA Symm. Integrability Geom. Methods Appl. 5, 054 (2009)

    MathSciNet  Google Scholar 

  8. Lam, T., Lapointe, L., Morse, J., Shimozono, M.: Affine insertion and Pieri rules for the affine Grassmannian. Mem. Am. Math. Soc. (to appear)

  9. Lassalle M.: An (inverse) Pieri formula for Macdonald polynomials of type C. Transform. Groups 15, 154–183 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lassalle M., Schlosser M.: Inversion of the Pieri formula for Macdonald polynomials. Adv. Math. 202, 289–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lenart, C.: Hall-Littlewood polynomials, alcove walks, and fillings of Young diagrams, I. arXiv:0804.4715

  12. Lenart, C.: Haglund-Haiman-Loehr type formulas for Hall-Littlewood polynomials of Type B and C. arXiv:0904.2407

  13. Macdonald, I.G.: Spherical Functions of p-adic Type. vol. 2. Publications of the Ramanujan Institute (1971)

  14. Macdonald I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  15. Macdonald, I.G.: Orthogonal polynomials associated with root systems. Sém. Lothar. Combin. 45, B45a (2000/2001)

  16. Macdonald I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  17. Manivel, L.: Symmetric functions, Schubert polynomials and Degeneracy Loci, SMF/AMS Texts and Monographs, vol. 6. American Mathematical Society Providence RI, Society of Mathematics, France, Paris (2001)

  18. Morris A.O.: A note on the multiplication of Hall functions. J. Lond. Math. Soc. 39, 481–488 (1964)

    Article  MATH  Google Scholar 

  19. Nelsen K., Ram A.: Kostka-Foulkes polynomials and Macdonald spherical functions. In: Wensley, C.D. (eds) Surveys in Combinatorics, London Mathematical Society, Lecture Note Series 307, pp. 325–370. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  20. Parkinson J.: Buildings and Hecke algebras. J. Algebra 297, 1–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ram A.: Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux. Pure Appl. Math. Q 2, 963–1013 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Schwer C.: Galleries, Hall-Littlewood polynomials and structure constants of the spherical Hecke algebra. Int. Math. Res. Not. IMRN 2006, 75395 (2006)

    MathSciNet  Google Scholar 

  23. Stembridge J.R.: The partial order of dominant weights. Adv. Math. 136, 340–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tamvakis, H.: Giambelli, Pieri, and tableau formulas via raising operators. arXiv:0812.0639

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Emsiz.

Additional information

Work supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grants # 1090118 and 3080006, by the Anillo ACT56 ‘Reticulados y Simetrías’ financed by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), and by the Programa ‘Reticulados y Ecuaciones’ of the Universidad de Talca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Diejen, J.F., Emsiz, E. Pieri formulas for Macdonald’s spherical functions and polynomials. Math. Z. 269, 281–292 (2011). https://doi.org/10.1007/s00209-010-0727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0727-0

Keywords

Mathematics Subject Classification (2000)

Navigation