Skip to main content
Log in

The length and other invariants of a real field

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The length of a field is the smallest integer m such that any totally positive quadratic form of dimension m represents all sums of squares. We investigate this field invariant and compare it to others such as the u-invariant, the Pythagoras number, the Hasse number, and the Mordell function related to sums of squares of linear forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arason J.K., Elman R.: Powers of the fundamental ideal in the Witt ring. J. Algebra 239, 150–160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baeza R., Leep D., O’Ryan M., Prieto J.P.: Sums of squares of linear forms. Math. Z. 193, 297–306 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Becher K.J.: Supreme Pfister forms. Comm. Algebra 32, 217–241 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becher K.J.: On fields of u-invariant 4. Arch. Math. 86, 31–35 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becher K.J.: Decomposability for division algebras of exponent two and associated forms. Math. Z. 258, 691–709 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Becher K.J.: On the u-invariant of a real function field. Math. Ann. 346, 245–249 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi M.D., Dai Z.D., Lam T.Y., Reznick B.: The Pythagoras number of some affine algebras and local algebras. J. Reine Angew. Math. 336, 45–82 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elman R., Lam T.Y.: Quadratic forms and the u-invariant, I. Math. Z. 131, 283–304 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elman R., Lam T.Y.: Quadratic forms under algebraic extensions. Math. Ann. 219, 21–42 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elman R., Prestel A.: Reduced stability of the Witt ring of a field and its Pythagorean closure. Am. J. Math. 106, 1237–1260 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoffmann D.W.: Pythagoras numbers of fields. J. Am. Math. Soc. 12, 839–848 (1999)

    Article  MATH  Google Scholar 

  12. Hornix E.A.M.: Formally real fields with prescribed invariants in the theory of quadratic forms. Indag. Math. (N.S.) 2, 65–78 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hornix E.A.M.: Totally indefinite quadratic forms over formally real fields. Nederl. Akad. Wetensch. Indag. Math. 47, 305–312 (1985)

    MathSciNet  MATH  Google Scholar 

  14. Izhboldin O.: Fields of u-invariant 9. Ann. Math. 154, 529–587 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karpenko N., Merkurjev A.S.: Essential dimension of quadrics. Inventiones Math. 153, 361–372 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Laghribi A.: Formes quadratiques de dimension 6. Math. Nachr. 204, 125–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lam, T.Y.: Introduction to quadratic forms over fields. Graduate Studies in Mathematics, 67, American Mathematical Society, Providence (2005)

  18. Mordell L.J.: On the representation of a binary quadratic form as a sum of squares of linear forms. Math. Z. 35, 1–15 (1932)

    Article  MathSciNet  Google Scholar 

  19. Orlov D., Vishik A., Voevodsky V.: An exact sequence for \({K^{M}_{\ast} /2}\) with applications to quadratic forms. Ann. Math. 165, 1–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Scharlau, W.: Quadratic and Hermitian forms. Grundlehren der Mathematischen Wissenschaften, 270. Springer, Berlin (1985)

  21. Tignol J.-P.: Réduction de l’indice d’une algèbre simple centrale sur le corps des fonctions d’une quadrique. Bull. Soc. Math. Belgique Sér. A 42, 735–745 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Ware R.: Hasse principles and the u-invariant over formally real fields. Nagoya Math. J. 61, 117–125 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Johannes Becher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, K.J., Leep, D.B. The length and other invariants of a real field. Math. Z. 269, 235–252 (2011). https://doi.org/10.1007/s00209-010-0724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0724-3

Mathematics Subject Classification (2010)

Navigation