Skip to main content
Log in

Q-curvature flow on 4-manifolds with boundary

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Given a compact four-dimensional smooth Riemannian manifold (M,g) with smooth boundary, we consider the evolution equation by Q-curvature in the interior keeping the T-curvature and the mean curvature to be zero. Using integral methods, we prove global existence and convergence for the Q-curvature flow to a smooth metric conformal to g of prescribed Q-curvature, zero T-curvature and vanishing mean curvature under conformally invariant assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brendle S.: Global existence and convergence for a higher order flow in conformal geometry. Ann. Math. 158, 323–343 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brendle S.: Convergence of the Q-curvature flow on \({\mathbb{S}^4}\) . Adv. Math. 205, 1–32 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brendle S.: Curvature flows on surfaces with boundary. Math. Ann. 324, 491–519 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang S.Y.A., Qing J.: The zeta functional determinants on manifolds with boundary 1. Formula J. Funct. Anal. 147, 327–362 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang S.Y.A., Qing J.: The zeta functional determinants on manifolds with boundary. II. Extremal Metrics and Compactness of Isospectral Set. J. Funct. Anal. 147, 363–399 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chow B.: The Ricci flow on the 2-sphere. J. Differ. Geom. 33(2), 325–334 (1991)

    MATH  Google Scholar 

  7. Friedman A.: Partial Differential Equations. Robert E. Krieger Publishing Company Malabar, Florida (1983)

    Google Scholar 

  8. Ho, P.T.: Q-curvature flow on \({\mathbb{S}^n}\) , preprint

  9. Gursky M.: A non-local flow for Riemannian surfaces. Cal. Var. PDES 32(1), 53–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamilton R.: The Ricci flow on surfaces. Mathematics and General Relativity (Santa Cruz, CA, 1986), pp. 237–262. Contemp. Math., vol. 71. American Mathematical Society, Providence (1988)

  11. Malchiodi A., Struwe M.: Q-curvature flow on \({\mathbb{S}^4}\) . J. Differ. Geom. 73(1), 1–44 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Ndiaye C.B.: Constant Q-curvature metrics in arbitrary dimension. J. Funct. Anal. 251(1), 1–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ndiaye C.B.: Conformal metrics with constant Q-curvature for manifolds with boundary. Commun. Anal. Geom. 16(5), 1049–1124 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Ndiaye C.B.: Constant T-curvature conformal metric on 4-manifolds with boundary. Pac. J. Math. 240(1), 151–184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Simon L.: Asymptotics for a class of non-linear evolution equations, with applications to geometry. Ann. Math. 118, 525–571 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheikh Birahim Ndiaye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ndiaye, C.B. Q-curvature flow on 4-manifolds with boundary. Math. Z. 269, 83–114 (2011). https://doi.org/10.1007/s00209-010-0717-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0717-2

Keywords

Mathematics Subject Classification (2000)

Navigation