Skip to main content
Log in

Twisted K-theory for actions of Lie groupoids and its completion theorem

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we define twisted equivariant K-theory for actions of Lie groupoids. For a Bredon-compatible Lie groupoid \({\mathcal{G}}\), we show that this defines a periodic cohomology theory on the category of finite \({\mathcal{G}}\)–CW-complexes with \({\mathcal{G}}\)-stable projective bundles by comparing with a suitable representable cohomology theory. A classification of these bundles is shown. We also obtain a completion theorem and apply these results to proper actions of groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adem, A., Leida, J., Ruan, Y.: Orbifolds and stringy topology. In: Cambridge Tracts in Mathematics, vol. 171 (2007)

  2. Atiyah M., Segal G.: Equivariant K-theory and completion. J. Diff. Geom. 3, 1–18 (1969)

    MathSciNet  MATH  Google Scholar 

  3. Atiyah M., Segal G.: Twisted K-theory. Ukr. Math. Bull. 1(3), 291–334 (2004) arXiv:math/0407054v2

    MathSciNet  Google Scholar 

  4. Brown E.H.: Cohomology theories. Ann. Math. 75(3), 467–484 (1962)

    Article  Google Scholar 

  5. Cantarero, J.: Equivariant K-theory, groupoids and proper actions. arXiv:0803.3244 (2008)

  6. Dwyer, C.: Twisted equivariant K-theory for proper actions of discrete groups. Ph.D. Thesis (2005)

  7. Elmendorf A.D.: Systems of fixed point sets. Trans. Am. Math. Soc. 277, 275–284 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Emerson, H., Meyer, R.: Equivariant representable K-theory. arXiv:0710.1410v1 (2007)

  9. Freed, D., Hopkins, M., Teleman, C.: Loop groups and twisted K-theory. arXiv:math/0711.1906v1 (2007)

  10. Freed, D., Hopkins, M., Teleman, C., Loop groups and twisted K-theory II. arXiv:math/0511232 (2005)

  11. Freed D., Hopkins M., Teleman C.: Twisted equivariantK-theory with complex coefficients. J. Topol. 1(1), 16–44 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gepner, D., Henriques, A.: Homotopy theory of orbispaces. arXiv:math.AT/0701916 (2007)

  13. Jackowski S.: Families of subgroups and completions. J. Pure Appl. Algebra 37, 167–179 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karoubi M.: K-Theory: An Introduction. Springer, Berlin (1978)

    MATH  Google Scholar 

  15. Kitchloo, N.: Dominant K-theory and integrable highest weight representations of Kac-Moody groups. arXiv:math/0710.0167v1 (2007)

  16. Lahtinen, A.: The Atiyah-Segal completion theorem in twisted K-theory. arXiv:0809.1273 (2009)

  17. Luck, W.: Survey on classifying spaces for families of subgroups. In: Infinite groups: geometric, combinatorial and dynamical aspects. Progr. Math., vol. 248, pp. 269–322. Birkhäuser, Basel (2005)

  18. Luck W., Oliver B.: The completion theorem in K-theory forproper actions of a discrete group. Topology 40, 585–616 (2001)

    Article  MathSciNet  Google Scholar 

  19. May, J.P.: Classifying spaces and fibrations. Mem. Am. Math. Soc. 155 (1975)

  20. Mac Lane S.: Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer, New York (1998)

    Google Scholar 

  21. Moerdijk I., Mrcun J.: Introduction to Foliations and Liegroupoids. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  22. Paterson, A.L.T.: Groupoids, inverse semigroups, and theiroperator algebras. In: Progress in Mathematics, vol. 170. Birkhauser, Boston (1998)

  23. Phillips, N.C.: Equivariant K-theory for proper actions. In: Pitman research notes in mathematics, vol. 178 (1989)

  24. Phillips N.C.: Equivariant K-theory for proper actions II: some cases in which finite dimensional bundles suffice. Index theory of elliptic operators, foliations and operator algebras. Contem. Math. 70, 205–227 (1988)

    Google Scholar 

  25. Sauer, J.: K-theory for proper smooth actions of totally disconnected groups. In: High-dimensional Manifold Topology, pp. 427-448. World Sci. Publ., River Edge (2003)

  26. Segal G.: Classifying spaces and spectral sequences. Inst. Hautes Etudes Sci. Publ. Math. 34, 105–112 (1968)

    Article  MATH  Google Scholar 

  27. Segal G.: The representation ring of a compact Lie group. Inst. Hautes Etudes Sci. Publ. Math. 34, 113–128 (1968)

    Article  MATH  Google Scholar 

  28. Segal G.: Equivariant K-theory. Inst. Hautes Etudes Sci. Publ. Math. 34, 129–151 (1968)

    Article  MATH  Google Scholar 

  29. Segal G.: Categories and cohomology theories. Topology 13, 293–312 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Cantarero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantarero, J. Twisted K-theory for actions of Lie groupoids and its completion theorem. Math. Z. 268, 559–583 (2011). https://doi.org/10.1007/s00209-010-0683-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0683-8

Keywords

Mathematics Subject Classification (2000)

Navigation