Skip to main content
Log in

The equitable basis for \({\mathfrak{sl}_2}\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

This article contains an investigation of the equitable basis for the Lie algebra \({\mathfrak{sl}_2}\). Denoting this basis by {x, y, z}, we have

$$[x,y] = 2x + 2y, \quad [y,z] = 2y + 2z, \quad [z, x] = 2z + 2x.$$

We determine the group of automorphisms G generated by exp(ad x*), exp(ad y*), exp(ad z*), where {x*, y*, z*} is the basis for \({\mathfrak{sl}_2}\) dual to {x, y, z} with respect to the trace form (u, v) = tr(uv) and study the relationship of G to the isometries of the lattices \({L={\mathbb Z}x \oplus {\mathbb Z}y\oplus {\mathbb Z}z}\) and \({L^* ={\mathbb Z}x^*\oplus {\mathbb Z}y^*\oplus {\mathbb Z}z^*}\). The matrix of the trace form is a Cartan matrix of hyperbolic type, and we identify the equitable basis with a set of simple roots of the corresponding Kac–Moody Lie algebra \({\mathfrak{g}}\), so that L is the root lattice and \({\frac{1}{2} L^*}\) is the weight lattice of \({\mathfrak g}\). The orbit G(x) of x coincides with the set of real roots of \({\mathfrak g}\). We determine the isotropic roots of \({\mathfrak g}\) and show that each isotropic root has multiplicity 1. We describe the finite-dimensional \({\mathfrak{sl}_2}\)-modules from the point of view of the equitable basis. In the final section, we establish a connection between the Weyl group orbit of the fundamental weights of \({\mathfrak{g}}\) and Pythagorean triples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alperin R.C.: \({{\rm PSL}_2(\mathbb Z) = \mathbb Z_2\ast \mathbb Z_3}\). Am. Math. Mon. 100, 385–386 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alperin R.C.: The modular tree of Pythagoras. Am. Math. Mon. 112, 807–816 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benkart G., Terwilliger P.: The universal central extension of the three-point \({\mathfrak {sl}_2}\) loop algebra. Proc. Am. Math. Soc. 135, 1659–1668 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hartwig, B.: Tridiagonal pairs, the Onsager algebra, and the three-point \({\mathfrak{sl}_2}\) loop algebra. Ph.D. thesis, University of Wisconsin-Madison (2006)

  5. Hartwig B.: The tetrahedron algebra and its finite-dimensional irreducible modules. Linear Algebra Appl. 422, 219–235 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hartwig B., Terwilliger P.: The Tetrahedron algebra, the Onsager algebra, and the \({\mathfrak{sl}_2}\) loop algebra. J. Algebra 308, 840–863 (2007) arXiv:math-ph/0511004

    Article  MathSciNet  MATH  Google Scholar 

  7. Humphreys J.: Introduction to Lie Algebras and Representation Theory. Springer, New York (1972)

    MATH  Google Scholar 

  8. Ito T., Terwilliger P., Weng C.: The quantum algebra \({U_q(\mathfrak {sl}_2)}\) and its equitable presentation. J. Algebra 208, 284–301 (2006)

    Article  MathSciNet  Google Scholar 

  9. Kac V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  10. Moody R.V.: Root systems of hyperbolic type. Adv. Math. 33(2), 144–160 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Moody R.V., Pianzola A.: Lie Algebras with Triangular Decomposition. Wiley, New York (1995)

    Google Scholar 

  12. Tuba I., Wenzl H.: Representations of the braid group B3 and of SL\({(2,\mathbb Z)}\). Pac. J. Math. 197, 491–510 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Benkart.

Additional information

Support from NSF grant #DMS-0245082 to G. Benkart is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkart, G., Terwilliger, P. The equitable basis for \({\mathfrak{sl}_2}\) . Math. Z. 268, 535–557 (2011). https://doi.org/10.1007/s00209-010-0682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0682-9

Keywords

Mathematics Subject Classification (2000)

Navigation