Skip to main content
Log in

Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

By using sheaf-theoretical methods such as constructible sheaves, we generalize the formula of Libgober–Sperber concerning the zeta functions of monodromy at infinity of polynomial maps into various directions. In particular, some formulas for the zeta functions of global monodromy along the fibers of bifurcation points of polynomial maps will be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A’Campo N.: Le nombre de Lefschetz d’une monodromie. Indag. Math. 35, 113–118 (1973)

    MathSciNet  Google Scholar 

  2. Broughton S.A.: Milnor numbers and the topology of polynomial hypersurfaces. Invent. Math. 92, 217–241 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dimca A.: Sheaves in topology, Universitext. Springer, Berlin (2004)

    Google Scholar 

  4. Fulton W.: Introduction to Toric Varieties. Princeton University Press, New Jersey (1993)

    MATH  Google Scholar 

  5. García López R., Némethi A.: On the monodromy at infinity of a polynomial map. Compositio Math. 100, 205–231 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley interscience, New York (1994)

    MATH  Google Scholar 

  7. Gusein-Zade S., Luengo I., Melle-Hernández A.: Zeta functions of germs of meromorphic functions, and the Newton diagram. Funct. Anal. Appl. 32, 93–99 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gusein-Zade S., Luengo I., Melle-Hernández A.: On the zeta-function of a polynomial at infinity. Bull. Sci. Math. 124, 213–224 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harris J.: Algebraic Geometry, GTM 133. Springer, Berlin (1992)

    Google Scholar 

  10. Hotta R., Takeuchi K., Tanisaki T.: D-modules, Perverse Sheaves, and Representation Theory. Birkhäuser, Boston (2008)

    Book  MATH  Google Scholar 

  11. Kashiwara M., Schapira P.: Sheaves on Manifolds. Springer, Berlin (1990)

    MATH  Google Scholar 

  12. Khovanskii A.-G.: Newton polyhedra and toroidal varieties. Funct. Anal. Appl. 11, 289–296 (1978)

    Article  Google Scholar 

  13. Kirillov A.-N.: Zeta function of the monodromy for complete intersection singularities. J. Math. Sci. 25, 1051–1057 (1984)

    Article  Google Scholar 

  14. Kouchnirenko A.-G.: Polyédres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)

    Article  MathSciNet  Google Scholar 

  15. Lê, D.-T.: Some remarks on relative monodromy, Real and complex singularities. In: Proceedings of the Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976, pp. 397–403 (1977)

  16. Libgober A., Sperber S.: On the zeta function of monodromy of a polynomial map. Compositio Math. 95, 287–307 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Looijenga E.: Isolated singular points of complete intersections. London Math. Soc. Lecture Notes, vol. 77. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  18. Matsui, Y., Takeuchi, K.: A geometric degree formula for A-discriminants and Euler obstructions of toric varieties, arXiv:0807.3163

  19. Matsui, Y., Takeuchi, K.: Milnor fibers over singular toric varieties and nearby cycle sheaves, arXiv: 0809.3148

  20. Milnor J.: Singular Points of Complex Hypersurfaces. Princeton University Press, New Jersey (1968)

    MATH  Google Scholar 

  21. Némethi A., Zaharia A.: On the bifurcation set of a polynomial function and newton boundary. Publ. Res. Inst. Math. Sci. 26, 681–689 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oda T.: Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties. Springer, Berlin (1988)

    MATH  Google Scholar 

  23. Oka M.: Non-degenerate Complete Intersection Singularity. Hermann, Paris (1997)

    MATH  Google Scholar 

  24. Schürmann J.: Topology of Singular Spaces and Constructible Sheaves. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  25. Siersma D., Tibăr M.: Singularities at infinity and their vanishing cycles. Duke Math. J. 80, 771–783 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Siersma D., Tibăr M.: Singularities at infinity and their vanishing cycles. II. Monodromy, Publ. Res. Inst. Math. Sci. 36, 659–679 (2000)

    Article  MATH  Google Scholar 

  27. Takeuchi K.: Perverse sheaves and Milnor fibers over singular varieties. Adv. Stud. Pure Math. 46, 211–222 (2007)

    Google Scholar 

  28. Takeuchi, K.: Monodromy at infinity of A-hypergeometric functions and toric compactifications, arXiv:0812.0652

  29. Varchenko A.-N.: Zeta-function of monodromy and Newton’s diagram. Invent. Math. 37, 253–262 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Matsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, Y., Takeuchi, K. Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves. Math. Z. 268, 409–439 (2011). https://doi.org/10.1007/s00209-010-0678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0678-5

Keywords

Mathematics Subject Classification (2000)

Navigation