Skip to main content
Log in

Schubert polynomials and Arakelov theory of orthogonal flag varieties

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We propose a theory of combinatorially explicit Schubert polynomials which represent the Schubert classes in the Borel presentation of the cohomology ring of the orthogonal flag variety \({\mathfrak X={\rm SO}_N/B}\). We use these polynomials to describe the arithmetic Schubert calculus on \({\mathfrak X}\). Moreover, we give a method to compute the natural arithmetic Chern numbers on \({\mathfrak X}\), and show that they are all rational numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein I.N., Gelfand I.M., Gelfand S.I.: Schubert cells and cohomology of the spaces G/P. Russ. Math. Surv. 28(3), 1–26 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Billey S., Haiman M.: Schubert polynomials for the classical groups. J. Am. Math. Soc. 8, 443–482 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borel A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. 57, 115–207 (1953)

    Article  MathSciNet  Google Scholar 

  4. Bost J.-B., Gillet H., Soulé C.: Heights of projective varieties and positive Green forms. J. Am. Math. Soc. 7, 903–1027 (1994)

    Article  MATH  Google Scholar 

  5. Bott R., Chern S.S.: Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math. 114, 71–112 (1968)

    Article  MathSciNet  Google Scholar 

  6. Demazure M.: Invariants symétriques des groupes de Weyl et torsion. Invent Math. 21, 287–301 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demazure M.: Désingularisation des variétés de Schubert généralisées. Ann. Sci. École Norm. Sup. 7(4), 53–88 (1974)

    MathSciNet  MATH  Google Scholar 

  8. Faltings G.: Diophantine approximation on abelian varieties. Ann. Math. 133, 549–576 (1991)

    Article  MathSciNet  Google Scholar 

  9. Fulton W.: Intersection Theory 2nd edn, Ergebnisse der Math. 2. Springer, Berlin (1998)

    Google Scholar 

  10. Gillet H., Soulé C.: Arithmetic intersection theory. Publ. Math. IHES 72, 94–174 (1990)

    Google Scholar 

  11. Gillet, H., Soulé, C.: Characteristic classes for algebraic vector bundles with hermitian metrics, I, II. Ann. Math. 131, 163–203, 205–238 (1990)

    Google Scholar 

  12. Goodman R., Wallach N.: Representations and Invariants of the Classical Groups, Encyclopedia of Mathematics and its Applications 68. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  13. Griffiths P., Schmid W.: Locally homogeneous complex manifolds. Acta Math. 123, 253–302 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jantzen J.C.: Representations of Algebraic Groups, 2nd edn. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  15. Józefiak T.: Schur Q-functions and cohomology of isotropic Grassmannians. Math. Proc. Camb. Phil. Soc. 109, 471–478 (1991)

    Article  MATH  Google Scholar 

  16. Kaiser C., Köhler K.: A fixed point formula of Lefschetz type in Arakelov geometry III: representations of Chevalley schemes and heights of flag varieties. Invent Math. 147, 633–669 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Künnemann, K., Maillot, V.: Théorèmes de Lefschetz et de Hodge arithmétiques pour les variétés admettant une décomposition cellulaire, Regulators in analysis, geometry and number theory. Progr. Math. 171, 197–205, Birkhäuser, Boston (2000)

    Google Scholar 

  18. Lam, T.K.: B and D analogues of stable Schubert polynomials and related insertion algorithms. Ph.D. thesis, MIT (1994)

  19. Lascoux A., Pragacz P.: Orthogonal divided differences and Schubert polynomials, \({\widetilde{P}}\)-functions, and vertex operators. Mich. Math. J. 48, 417–441 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lascoux A., Schützenberger M.-P.: Polynômes de Schubert. C R Acad. Sci. Paris Sér I Math. 294, 447–450 (1982)

    MATH  Google Scholar 

  21. Pragacz P., Ratajski J.: Formulas for Lagrangian and orthogonal degeneracy loci; \({\widetilde{Q}}\)-polynomial approach. Compos. Math. 107, 11–87 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tamvakis H.: Bott-Chern forms and arithmetic intersections. Enseign. Math. 43, 33–54 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Tamvakis H.: Arithmetic intersection theory on flag varieties. Math. Ann. 314, 641–665 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tamvakis H.: Height formulas for homogeneous varieties. Mich. Math. J. 48, 593–610 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tamvakis H.: Arakelov theory of even orthogonal Grassmannians. Comment. Math. Helv. 82, 455–475 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tamvakis, H.: Schubert polynomials and Arakelov theory of symplectic flag varieties, Preprint (2008), arXiv:0808.1329

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Tamvakis.

Additional information

The author was supported in part by National Science Foundation Grant DMS-0901341.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamvakis, H. Schubert polynomials and Arakelov theory of orthogonal flag varieties. Math. Z. 268, 355–370 (2011). https://doi.org/10.1007/s00209-010-0676-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0676-7

Mathematics Subject Classification (2000)

Navigation