Skip to main content
Log in

Extended canonical algebras and Fuchsian singularities

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The authors introduce a new class of finite dimensional algebras called extended canonical, and determine the shape of their derived categories. Extended canonical algebras arise from a canonical algebra Λ by onepoint extension or coextension by an indecomposable projective module. Our main results concern the case of negative Euler characteristic of the corresponding weighted projective line \({\mathbb{X}}\); more specifically we establish, for a base field of arbitrary characteristic, a link to the Fuchsian singularity R of \({\mathbb{X}}\) which for the base field of complex numbers is isomorphic to an algebra of automorphic forms. By means of a recent result of Orlov we show that the triangulated category of the graded singularities of R (in the sense of Buchweitz and Orlov) admits a tilting object whose endomorphism ring is the corresponding extended canonical algebra. Of particular interest are those cases where the attached Coxeter transformation has spectral radius one. A K-theoretic analysis then shows that this happens exactly for 38 cases including Arnold’s 14 exceptional unimodal singularities. The paper is related to recent independent work by Kajiura, Saito and Takahashi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I., Gusejn-Zade, S., Varchenko, A.: Singularities of differentiable maps. Monographs in Math. 82, Birkhäuser (1985)

  2. Barot M., Lenzing H.: One-point extensions and derived equivalences. J. Algebra 264, 1–5 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bondal A.I.: Representations of associative algebras and coherent sheaves. Math. USSR Izv. 34, 23–42 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bondal A.I., Kapranov M.M.: Enhanced triangulated categories. Math. USSR Sb 70, 93–107 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buchweitz, R.O.: Maximal Cohen–Macaulay modules and tate-cohomology over Gorenstein rings. Unpublished manuscript, pp. 155 (1987)

  6. Dolgachev I.V.: Automorphic forms and quasihomogeneous singularities. Funct. Anal. Appl. 9, 149–151 (1975)

    Article  MATH  Google Scholar 

  7. Ebeling W., Wall C.T.C.: Kodaira singularities and an extension of Arnold’s strange duality. Compositio Math. 56, 3–77 (1985)

    MathSciNet  MATH  Google Scholar 

  8. Ebeling, W.: The monodromy groups of isolated singularities of complete intersections. Lect. Notes Math. 1293, Springer, Berlin (1987)

  9. Ebeling W.: The Poincaré series of some special quasihomogeneous surface singularities. Publ. RIMS. Kyoto Univ. 39, 393–413 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabriel P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)

    MathSciNet  MATH  Google Scholar 

  11. Geigle, W., Lenzing, H.: A class of weighted projective curves arising in representation theory of finite dimensional algebras. In: Singularities, representation of algebras and vector bundles. Lect. Notes Math. 1273, Springer, Berlin 265–297 (1987)

  12. Geigle W., Lenzing H.: Perpendicular categories with applications to representations and sheaves. J. Alg. 144, 273–343 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gelfand S.I., Manin Yu. I.: Methods of Homological Algebra. Springer, Berlin (2003)

    MATH  Google Scholar 

  14. Happel, D.: Triangulated categories in the representation theory of finite dimensional algebras. Lond. Math. Soc. Lect. Note Ser. 119 (1988)

  15. Happel, D., Reiten, I., Smal  S.: Tilting in abelian categories and quasitilted algebras. Mem. Am. Math. Soc. 575 (1996)

  16. Happel D.: A characterization of hereditary categories with tilting object. Invent. Math. 144, 161–179 (2001)

    Article  MathSciNet  Google Scholar 

  17. Kajiura H., Saito K., Takahashi A.: Matrix factorizations and representations of quivers II: type ADE case. Adv. Math. 211, 327–362 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kajiura H., Saito K., Takahashi A.: Triangulated categories of matrix factorizations for regular systems of weights with \({\epsilon=1}\). Adv. Math. 220, 1602–1654 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Keller, B.: On differential graded categories. International Congress of Mathematicians, vol. 2, pp. 151–190, Eur. Math. Soc., Zürich (2006)

  20. Krause H.: The stable derived category of a noetherian scheme. Compositio Math. 141, 1128–1162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Laufer H.: On minimally elliptic singularities. Ann. J. Math. 99, 1257–1295 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Lenzing, H.: Wild canonical algebras and rings of automorphic forms. In: Finite dimensional algebras and related topics. Kluwer, pp. 191–212 (1994)

  23. Lenzing, H., Meltzer, H. Tilting sheaves and concealed-canonical algebras. In: Proceedings of ICRA VII. CMS Conference Proc. 18, 455–473 (1996)

  24. Lenzing H., de la Peña J.A.: Wild canonical algebras. Math. Z. 224, 403–425 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lenzing H., de la Peña J.A.: Coxeter polynomials and a Chebysheff recursion formula. Linear Algebra Appl. 430, 947–956 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lenzing H.: Coxeter transformations associated with finite dimensional algebras. Prog. Math. 173, 287–308 (1999)

    MathSciNet  Google Scholar 

  27. Milnor, J.: On the 3 dimensional Brieskorn manifolds m(p,q,r). In: Knots, groups and 3-manifolds; Pap. dedic. Mem. R.H. Fox, pp. 175–225 (1975)

  28. Neeman A.: Triangulated Categories: Annals of Mathematics Studies 148. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  29. Neumann W.: Brieskorn complete intersections and automorphic forms. Invent. Math. 42, 285–293 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Orlov D.: Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Proc. Steklov Inst. Math. 246, 227–248 (2004)

    Google Scholar 

  31. Orlov D.: Triangulated categories of singularities and D-branes in Landau-Ginzburg models. translation in Sb. Math. 197(11–12), 1827–1840 (2006)

    MATH  Google Scholar 

  32. Orlov, D.: Derived categories of coherent sheaves and triangulated categories of singularities. arXiv: math.AG/0503632v2 22 Sep 2005

  33. de la Peña J.A.: On the dimension of the module-varieties of tame and wild algebras. Comm. Algebra 19(6), 1795–1807 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rickard J.: Morita theory for derived categories. J. Lond. Math. Soc. 39, 436–456 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ringel C.M.: The canonical algebras. Topics in Algebra, part I. Banach Center Pub 26, 407–432 (1950)

    MathSciNet  Google Scholar 

  36. Ringel C.M.: Tame algebras and Integral Quadratic Forms. Lecture Notes Mathematics, pp. 1099. Springer, Berlin (1984)

    Google Scholar 

  37. Ueda, K.: Homological mirror symmetry and simple elliptic singularities. arXiv:math.AG/0604361 v2 3 Jul 2006

  38. Wagreich P.: Automorphic forms and singularities with \({\mathbb{C}^*}\)-action. Ill. J. Math. 25, 359–382 (1981)

    MathSciNet  MATH  Google Scholar 

  39. Wagreich P.: Algebras of automorphic forms with few generators. Trans. Am. Math. Soc. 262, 367–389 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. de la Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenzing, H., de la Peña, J.A. Extended canonical algebras and Fuchsian singularities. Math. Z. 268, 143–167 (2011). https://doi.org/10.1007/s00209-010-0663-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0663-z

Mathematics Subject Classification (2000)

Navigation