Skip to main content
Log in

Global L p estimates for degenerate Ornstein–Uhlenbeck operators

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider a class of degenerate Ornstein–Uhlenbeck operators in \({\mathbb{R}^{N}}\) , of the kind

$$\mathcal{A}\equiv\sum_{i, j=1}^{p_{0}}a_{ij}\partial_{x_{i}x_{j}}^{2} + \sum_{i, j=1}^{N}b_{ij}x_{i}\partial_{x_{j}}$$

where (a ij ), (b ij ) are constant matrices, (a ij ) is symmetric positive definite on \({\mathbb{R} ^{p_{0}}}\) (p 0 ≤ N), and (b ij ) is such that \({\mathcal{A}}\) is hypoelliptic. For this class of operators we prove global L p estimates (1 < p < ∞) of the kind:

$$\left\Vert \partial_{x_{i}x_{j}}^{2}u\right\Vert _{L^{p}\left(\mathbb{R}^{N}\right)} \leq c \left\{\left\Vert \mathcal{A}u\right\Vert _{L^{p}\left(\mathbb{R}^{N}\right)} + \left\Vert u\right\Vert_{L^{p}\left(\mathbb{R}^{N}\right)}\right\} {\rm for} \, i, j = 1, 2, \ldots, p_{0}$$

and corresponding weak type (1,1) estimates. This result seems to be the first case of global estimates, in Lebesgue L p spaces, for complete Hörmander’s operators

$$\sum X_{i}^{2}+X_{0},$$

proved in absence of a structure of homogeneous group. We obtain the previous estimates as a byproduct of the following one, which is of interest in its own:

$$\left\Vert \partial_{x_{i}x_{j}}^{2}u\right\Vert _{L^{p}\left( S\right)}\leq c\left\Vert Lu\right\Vert _{L^{p}\left( S\right)}$$

for any \({u \in C_{0}^{\infty} \left(S\right)}\) , where S is the strip \({\mathbb{R}^{N} \times \left[-1, 1\right]}\) and L is the Kolmogorov-Fokker-Planck operator \({\mathcal{A} - \partial_{t}}\) . To get this estimate we use in a crucial way the left invariance of L with respect to a Lie group structure in \({\mathbb{R}^{N+1}}\) and some results on singular integrals on nonhomogeneous spaces recently proved in Bramanti (Revista Matematica Iberoamericana, 2009, in press).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anker J.-P.: A short proof of a classical covering lemma. Monatsh. Math. 107(1), 5–7 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bramanti, M.: Singular integrals on nonhomogeneous spaces: L 2 and L p continuity from Hölder estimates. Revista Matematica Iberoamericana 26 (2010, to appear)

  3. Chojnowska-Michalik A., Goldys B.: Symmetric Ornstein–Uhlenbeck semigroups and their generators. Probab. Theory Relat. Fields 124(4), 459–486 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cinti C., Pascucci A., Polidoro S.: Pointwise estimates for a class of non-homogeneous Kolmogorov equations. Math. Ann. 340(2), 237–264 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coifman R., Weiss G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Lecture Notes in Mathematics, n. 242. Springer, Berlin (1971)

    Google Scholar 

  6. Da Prato G., Lunardi A.: On the Ornstein–Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal. 131(1), 94–114 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Da Prato G., Zabczyk J.: Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  8. Da Prato G., Zabczyk J.: Second order partial differential equations in Hilbert spaces. London Mathematical Society Lecture Note Series, vol. 293. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  9. Di Francesco M., Polidoro S.: Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form. Adv. Differ. Equ. 11(11), 1261–1320 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Farkas B., Lunardi A.: Maximal regularity for Kolmogorov operators in L 2 spaces with respect to invariant measures. J. Math. Pures Appl. (9) 86(4), 310–321 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Folland G.B.: Real Analysis. Wiley, NY (1999)

    MATH  Google Scholar 

  12. Folland G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13, 161–207 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gaudy G.I., Qian T., Sjogren P.: Singular integrals associated to the Laplacian on the affine group ax + b. Ark. Mat. 30, 259–261 (1992)

    Article  MathSciNet  Google Scholar 

  14. Hörmander L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lanconelli E., Polidoro S.: On a class of hypoelliptic evolution operators. Partial differential equations, II (Turin, 1993). Rend. Sem. Mat. Univ. Politec. Torino 52(1), 29–63 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Lanconelli, E., Pascucci, A., Polidoro, S.: Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance. Nonlinear problems in mathematical physics and related topics, II. Int. Math. Ser. (N. Y.), vol. 2, pp. 243–265. Kluwer/Plenum, New York (2002)

  17. Lunardi A.: Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \({\mathbb{R}^{N}}\) . Ann. Sc. Norm. Sup. Pisa Cl. Sci. 24(4), 133–164 (1997)

    MATH  MathSciNet  Google Scholar 

  18. Lunardi A.: On the Ornstein–Uhlenbeck operator in L 2 spaces with respect to invariant measures. Trans. Amer. Math. Soc. 349(1), 155–169 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Metafune G., Prüss J., Rhandi A., Schnaubelt R.: The domain of the Ornstein–Uhlenbeck operator on an L p-space with invariant measure. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(2), 471–485 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Notices (9), 463–487 (1998)

  21. Pascucci A.: Kolmogorov equations in physics and in finance Elliptic and parabolic problems. Progr. Nonlinear Differ. Equ. Appl. 63, 353–364 (2005)

    Article  MathSciNet  Google Scholar 

  22. Priola E., Zabczyk J.: Liouville theorems for non-local operators. J. Funct. Anal. 216(2), 455–490 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rothschild L.P., Stein E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  24. ter Elst A.F.M., Robinson D.W., Sikora A.: Riesz transforms and Lie groups of polynomial growth. J. Funct. Anal. 162(1), 14–51 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Uhlenbeck, G.E., Ornstein, L.S.: On the Theory of the Brownian Motion. Phys. Rev. 36(3), 823–841 (1930). This paper is also contained. In: Wax, N. (ed.) Selected Papers on Noise and Stochastic Processes. Dover, NY (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bramanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bramanti, M., Cupini, G., Lanconelli, E. et al. Global L p estimates for degenerate Ornstein–Uhlenbeck operators. Math. Z. 266, 789–816 (2010). https://doi.org/10.1007/s00209-009-0599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0599-3

Keywords

Mathematics Subject Classification (2000)

Navigation