Skip to main content
Log in

A modified BLM approach to quantum affine \({\mathfrak{gl}_n}\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce a spanning set of Beilinson–Lusztig–MacPherson type, {A(j, r)}A,j, for affine quantum Schur algebras \({{{\boldsymbol{\mathcal S}}_\vartriangle}(n, r)}\) and construct a linearly independent set {A(j)}A,j for an associated algebra \({{{\boldsymbol{\widehat{\mathcal K}}}_\vartriangle}(n)}\) . We then establish explicitly some multiplication formulas of simple generators \({E^\vartriangle_{h,h+1}}(\mathbf{0})\) by an arbitrary element A(j) in \({{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle(n)}}\) via the corresponding formulas in \({{{\boldsymbol{\mathcal S}}_\vartriangle(n, r)}}\) , and compare these formulas with the multiplication formulas between a simple module and an arbitrary module in the Ringel–Hall algebras \({{{\boldsymbol{\mathfrak H}_\vartriangle(n)}}}\) associated with cyclic quivers. This allows us to use the triangular relation between monomial and PBW type bases for \({{\boldsymbol{\mathfrak H}}_\vartriangle}(n)\) established in Deng and Du (Adv Math 191:276–304, 2005) to derive similar triangular relations for \({{{\boldsymbol{\mathcal S}}_\vartriangle}(n, r)}\) and \({{\boldsymbol{\widehat{\mathcal K}}}_\vartriangle}(n)\) . Using these relations, we then show that the subspace \({{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)}\) of \({{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle}(n)}\) spanned by {A(j)}A,j contains the quantum enveloping algebra \({{{\mathbf U}_\vartriangle}(n)}\) of affine type A as a subalgebra. As an application, we prove that, when this construction is applied to quantum Schur algebras \({\boldsymbol{\mathcal S}(n,r)}\) , the resulting subspace \({{{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)}}\) is in fact a subalgebra which is isomorphic to the quantum enveloping algebra of \({\mathfrak{gl}_n}\) . We conjecture that \({{{{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)}}}\) is a subalgebra of \({{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle}(n)}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Beilinson A.A., Lusztig G., MacPherson R.: A geometric setting for the quantum deformation of GL n . Duke Math. J. 61, 655–677 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Deng B., Du J.: Monomial bases for quantum affine \({\mathfrak{sl}_n}\) . Adv. Math. 191, 276–304 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deng, B., Du, J., Parshall, B., Wang, J.: Finite dimensional algebras and quantum groups. Mathematical Surveys and Monographs, vol. 150. Amer. Math. Soc., Providence (2008)

  4. Deng B., Du J., Xiao J.: Generic extensions and canonical bases for cyclic quivers. Can. J. Math. 59, 1260–1283 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Doty S., Green R.M.: Presenting affine q-Schur algebras. Math. Z. 256, 311–345 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Du J., Fu Q., Wang J.-P.: Infinitesimal quantum \({\mathfrak{gl}_n}\) and little q-Schur algebras. J. Algebra 287, 199–233 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Du, J., Fu, Q.: Quantum \({\mathfrak{gl}_\infty}\) , infinite q-Schur algebras and their representations. J. Algebra (provisionally accepted)

  8. Du J., Parshall B.: Linear quivers and the geometric setting of quantum GL n . Indag. Math. (N.S.) 13, 459–481 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ginzburg V., Vasserot E.: Langlands reciprocity for affine quantum groups of type A n . Internat. Math. Res. Notices 3, 67–85 (1993)

    Article  MathSciNet  Google Scholar 

  10. Green R.M.: The affine q-Schur algebra. J. Algebra 215, 379–411 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo J.Y.: The Hall polynomials of a cyclic serial algebra. Comm. Algebra 23, 743–751 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Iwahori N., Matsumoto H.: On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups. Inst. Hautes Études Sci. Publ. Math. 25, 5–48 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lusztig G.: Some examples of square integrable representations of semisimple p-adic groups. Trans. Am. Math. Soc. 277, 623–653 (1983)

    MATH  MathSciNet  Google Scholar 

  14. Lusztig G.: Aperiodicity in quantum affine \({\mathfrak{gl}_n}\) . Asian J. Math. 3, 147–177 (1999)

    MATH  MathSciNet  Google Scholar 

  15. McGerty K.: Cells in quantum affine \({\mathfrak{gl}_n}\) . Intern. Math. Res. Notices 24, 1341–1361 (2003)

    Article  MathSciNet  Google Scholar 

  16. Reineke M.: Generic extensions and multiplicative bases of quantum groups at q = 0. Represent. Theory 5, 147–163 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ringel C.M.: The composition algebra of a cyclic quiver. Proc. Lond. Math. Soc. 66, 507–537 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Varagnolo M., Vasserot E.: On the decomposition matrices of the quantized Schur algebra. Duke Math. J. 100, 267–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang D.: On the affine Schur algebra of type A. Comm. Algebra 37, 1389–1419 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yang D.: On the affine Schur algebra of type A II. Algebra Represent. Theory 12, 63–75 (2009)

    Article  MATH  Google Scholar 

  21. Zwara G.: Degenerations for modules over representation-finite biserial algebras. J. Algebra 198, 563–581 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Additional information

Supported by the Australian Research Council and the National Natural Science Foundation of China. The research was carried out while the second author was visiting the University of New South Wales. The hospitality and support of UNSW are gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, J., Fu, Q. A modified BLM approach to quantum affine \({\mathfrak{gl}_n}\) . Math. Z. 266, 747–781 (2010). https://doi.org/10.1007/s00209-009-0596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0596-6

Keywords

Navigation