Skip to main content
Log in

Uniqueness of roots up to conjugacy for some affine and finite type Artin groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let G be one of the Artin groups of finite type B n = C n and affine type \({\tilde{\mathbf {A}}_{n-1}}\), \({\tilde{\mathbf {C}}_{n-1}}\). In this paper, we show that if α and β are elements of G such that α k = β k for some nonzero integer k, then α and β are conjugate in G. For the Artin group of type A n , this was recently proved by González-Meneses. In fact, we prove a stronger theorem, from which the above result follows easily by using descriptions of those Artin groups as subgroups of the braid group on n + 1 strands. Let P be a subset of {1, . . . , n}. An n-braid is said to be P-pure if its induced permutation fixes each \({i\in P}\), and P-straight if it is P-pure and it becomes trivial when we delete all the ith strands for \({i\not\in P}\). Exploiting the Nielsen–Thurston classification of braids, we show that if α and β are P-pure n-braids such that α k = β k for some nonzero integer k, then there exists a P-straight n-braid γ with β = γαγ −1. Moreover, if \({1\in P}\), the conjugating element γ can be chosen to have the first strand algebraically unlinked with the other strands. Especially in case of P = {1, . . . , n}, our result implies the uniqueness of roots of pure braids, which was known by Bardakov and by Kim and Rolfsen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allcock D.: Braid pictures for Artin groups. Trans. Am. Math. Soc. 354, 3455–3474 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Artin E.: Theorie der Zöpfe. Hamburg Abh. 4, 47–72 (1925)

    Article  MATH  Google Scholar 

  3. Bardakov, V.G.: On the theory of braid groups (Russian). Mat. Sb. 183, 3–42 (1992) [English translation: Acad. Sci. Sb. Math. 76 123–153 (1993)]

  4. Bell R.W., Margalit D.: Injections of Artin groups. Comment. Math. Helv. 82, 725–751 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bessis, D.: Finite complex reflection arrangements are K(π, 1). Preprint (arXiv:math/0610777v3)

  6. Bessis D., Digne F., Michel J.: Springer theory in braid groups and the Birman-Ko-Lee monoid. Pac. J. Math. 205, 287–309 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Birman, J.S.: Braids, links and mapping class groups. Ann. Math. Stud., vol. 82. Princeton University Press, Princeton (1974)

  8. Birman J.S., Lubotzky A., McCarthy J.: Abelian and solvable subgroups of maping class groups. Duke Math. J. 50, 1107–1120 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brouwer L.E.J.: Über die periodischen Transformationen der Kugel. Math. Ann. 80, 39–41 (1919)

    Article  MathSciNet  Google Scholar 

  10. Charney R., Crisp J.: Automorphism groups of some affine and finite type Artin groups. Math. Res. Lett. 12, 321–333 (2005)

    MATH  MathSciNet  Google Scholar 

  11. Crisp, J.: Injective Maps between Artin Groups. Geometric Group Theory down under (Canberra, 1996), pp. 119–137. de Gruyter, Berlin (1999)

  12. de Kerékjártó B.: Über die periodischen transformationen der Kreisscheibe und der Kugelfläche. Math. Ann. 80, 3–7 (1919)

    Google Scholar 

  13. Eilenberg S.: Sur les transformations périodiques de la surface de la sphére. Fund. Math. 22, 28–41 (1934)

    Google Scholar 

  14. Fathi, A., Laudenbach, F., Poenaru, V.: Travaux de Thurston sur les surfaces. Astérisque, vol. 66–67. Societe Mathematique de France, Paris (1979)

  15. González-Meneses J.: The nth root of a braid is unique up to conjugacy. Algebr. Geom. Topol. 3, 1103–1118 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. González-Meneses J., Wiest B.: On the structure of the centralizer of a braid. Ann. Sci. Ecole Norm. Sup. 37(4), 729–757 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Ivanov, N.V.: Subgroups of Teichmüller Modular Group. Transl. Math. Monogr., vol. 115. AMS, Providence (1992)

  18. Kim D., Rolfsen D.: An ordering for groups of pure braids and fibre-type hyperplane arrangements. Can. J. Math. 55, 822–838 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Lee E.-K., Lee S.-J.: A Garside-theoretic approach to the reducibility problem in braid groups. J. Algebra 320, 783–820 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Makanin, G.S.: The normalizers of a braid group (Russian). Mat. Sb. (N.S.) 86, 171–179 (1971) [English translation: Math. USSR-Sb. 15, 167–175 (1971)]

    Google Scholar 

  21. Thurston W.: On the isotopy and geometry of diffeomorphisms of surfaces. Bull. Am. Math. Soc. 19, 109–140 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eon-Kyung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, EK., Lee, SJ. Uniqueness of roots up to conjugacy for some affine and finite type Artin groups. Math. Z. 265, 571–587 (2010). https://doi.org/10.1007/s00209-009-0530-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0530-y

Keywords

Mathematics Subject Classification (2000)

Navigation