Skip to main content
Log in

On unitary representability of topological groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove that the additive group (E*, τ k (E)) of an \({\mathcal {L}_\infty}\) -Banach space E, with the topology τ k (E) of uniform convergence on compact subsets of E, is topologically isomorphic to a subgroup of the unitary group of some Hilbert space (is unitarily representable). This is the same as proving that the topological group (E*, τ k (E)) is uniformly homeomorphic to a subset of \({\ell_2^\kappa}\) for some κ. As an immediate consequence, preduals of commutative von Neumann algebras or duals of commutative C*-algebras are unitarily representable in the topology of uniform convergence on compact subsets. The unitary representability of free locally convex spaces (and thus of free Abelian topological groups) on compact spaces, follows as well. The above facts cannot be extended to noncommutative von Neumann algebras or general Schwartz spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharoni I., Maurey B., Mityagin B.S.: Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces. Israel J. Math. 52(3), 251–265 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aussenhofer L., Chasco M.J., Domínguez X., Tarieladze V.: On Schwartz groups. Studia Math. 181(3), 199–210 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Banaszczyk W.: Additive subgroups of topological vector spaces. Springer, Berlin (1991)

    MATH  Google Scholar 

  4. Banaszczyk, W.: Theorems of Bochner and Lévy for nuclear groups. In: Nuclear groups and Lie groups (Madrid, 1999), Res. Exp. Math., vol. 24, pp. 31–44. Heldermann, Lemgo (2001)

  5. Bekka B., de la Harpe P., Valette A.: Kazhdan’s property (T). New Mathematical Monographs, vol 11. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  6. Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis, vol. 1. American Mathematical Society, Providence (2000)

  7. Berg C., Christensen J.P.R., Ressel P.: Harmonic analysis on semigroups. Theory of positive definite and related functions. Springer, New York (1984)

    MATH  Google Scholar 

  8. Ciesielski Z.: On the isomorphisms of the spaces H α and m. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8, 217–222 (1960)

    MATH  MathSciNet  Google Scholar 

  9. Dilworth, S.J.: Special Banach lattices and their applications. In: Handbook of the geometry of Banach spaces, vol. I, pp. 497–532. North-Holland, Amsterdam (2001)

  10. Dutrieux Y., Lancien G.: Isometric embeddings of compact spaces into Banach spaces. J. Funct. Anal. 255(2), 494–501 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Enflo P.: On a problem of Smirnov. Ark. Math. 8, 107–109 (1969)

    Article  MathSciNet  Google Scholar 

  12. Folland G.B.: A course in abstract harmonic analysis. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  13. Fonf V.P., Johnson W.B., Plichko A.M., Shevchyk V.V.: Covering a compact set in a Banach space by an operator range of a Banach space with basis. Trans. Am. Math. Soc. 358(4), 1421–1434 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gao, S.: Unitary group actions and Hilbertian Polish metric spaces. In logic and its applications, vol. 380 of Contemp. Math., pp. 53–72. Am. Math. Soc., Providence (2005)

  15. Gao S., Pestov V.: On a universality property of some abelian Polish groups. Fund. Math. 179(1), 1–15 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Godefroy G., Kalton N.J.: Lipschitz-free Banach spaces. Studia Math. 159(1), 121–141 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kalton N.J.: Spaces of Lipschitz and Hölder functions and their applications. Collect. Math. 55(2), 171–217 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Kalton N.J., Montgomery-Smith S.J.: Set-functions and factorization. Arch. Math. (Basel) 61(2), 183–200 (1993)

    MATH  MathSciNet  Google Scholar 

  19. Megrelishvili, M.G.: Private, e-mail communication

  20. Megrelishvili M.G.: Reflexively but not unitarily representable topological groups. Topol. Proc. 25(Summer), 615–625 (2002)

    MathSciNet  Google Scholar 

  21. Megrelishvili, M.G.: Topological transformation groups: selected topics. In: Pearl, E. (ed.) Open problems in topology, pp. 423–439 (2007)

  22. Pestov V.: Free abelian topological groups and the Pontryagin–van Kampen duality. Bull. Aust. Math. Soc. 52(2), 297–311 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pestov V.: Amenable representations and dynamics of the unit sphere in an infinite-dimensional Hilbert space. Geom. Funct. Anal. 10(5), 1171–1201 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pestov, V.: Dynamics of infinite-dimensional groups and Ramsey-type phenomena. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro (2005)

  25. Pestov V.: Forty annotated questions about large topological groups. In: Pearl, E.(eds) Open problems in topology, pp. 439–451. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  26. Randtke D.J.: A simple example of a universal Schwartz space. Proc. Am. Math. Soc. 37, 185–188 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schoenberg I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shtern A.I.: Compact semitopological semigroups and reflexive representability of topological groups. Russ. J. Math. Phys. 2(1), 131–132 (1994)

    MATH  MathSciNet  Google Scholar 

  29. Tkachenko M.G.: On the completeness of free abelian topological groups. Dokl. Akad. Nauk SSSR 269(2), 299–303 (1983)

    MathSciNet  Google Scholar 

  30. Uspenskiĭ V.V.: Free topological groups of metrizable spaces. Izv. Akad. Nauk SSSR Ser. Math. 54(6), 1295–1319 (1990)

    Google Scholar 

  31. Uspenskiĭ V.V.: On the topology of a free locally convex space. Dokl. Akad. Nauk SSSR 270(6), 1334–1337 (1983)

    MathSciNet  Google Scholar 

  32. Uspenskiĭ, V.: e-mail to the author, December 2005

  33. Uspenskiĭ, V.: Unitary representability of free abelian topological groups. Appl. Gen. Topology (2008, to appear)

  34. Weaver N.: Lipschitz algebras. World Scientific Publishing Co. Inc., River Edge (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Galindo.

Additional information

Research partially supported by Spanish Ministry of Science, grant MTM2008-04599/MTM. The foundations of this paper were laid during the author’s stay at the University of Ottawa supported by a Generalitat Valenciana grant CTESPP/2004/086.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galindo, J. On unitary representability of topological groups. Math. Z. 263, 211–220 (2009). https://doi.org/10.1007/s00209-008-0461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0461-z

Keywords

Mathematics Subject Classification (2000)

Navigation