Abstract
Peter Jørgensen introduced the Auslander–Reiten quiver of a simply connected Poincaré duality space. He showed that its components are of the form \({{\mathbb {Z}}A_\infty}\) and that the Auslander–Reiten quiver of a d-dimensional sphere consists of d − 1 such components. We show that this is essentially the only case where finitely many components appear. More precisely, we construct families of modules, where for each family, each module lies in a different component. Depending on the cohomology dimensions of the differential graded algebras which appear, this is either a discrete family or an n-parameter family for all n.
Similar content being viewed by others
References
Adams J.F., Hilton P.J.: On the chain algebra of a loop space. Comment. Math. Helv. 30, 305–330 (1956)
Auslander, M.: Functors and morphisms determined by objects. In: Representation theory of algebras (Proc. Conf., Temple University, Philadelphia, PA, 1976). Lecture Notes in Pure Appl. Mathematics, vol. 37, pp. 1–244. Dekker, New York (1978)
Avramov L.L., Foxby H.-B.: Locally Gorenstein homomorphisms. Am. J. Math. 114(5), 1007–1047 (1992)
Avramov, L.L., Foxby, H.-B., Halperin, S.: Resolutions for dg modules. Preprint (2008, version from 7 March 2008)
Crawley-Boevey W.W.: On tame algebras and bocses. Proc. Lond. Math. Soc. (3) 56(3), 451–483 (1988)
Crawley-Boevey, W.W.: Matrix problems and Drozd’s theorem. Topics in algebra, Part 1 (Warsaw, 1988), vol. 26, pp. 199–222. Banach Center Publ. PWN, Warsaw (1990)
Drozd, J.A.: Tame and wild matrix problems. Representations and quadratic forms (Russian). Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, vol. 154, pp. 39–74 (1979)
Dwyer W.G., Greenlees J.P.C., Iyengar S.: Duality in algebra and topology. Adv. Math. 200(2), 357–402 (2006)
Félix Y., Halperin S., Thomas J.-C.: Gorenstein spaces. Adv. Math. 71(1), 92–112 (1988)
Félix Y., Halperin S., Thomas J.-C.: Rational homotopy theory Graduate. Texts in Mathematics, vol. 205. Springer, New York (2001)
Frankild A., Iyengar S., Jørgensen P.: Dualizing differential graded modules and Gorenstein differential graded algebras. J. Lond. Math. Soc. 68(2), 288–306 (2003)
Frankild, A., Jørgensen, P.: Homological identities for differential graded algebras II. Part of PhD thesis A. Frankild, (2002)
Frankild A., Jørgensen P.: Gorenstein differential graded algebras. Isr. J. Math. 135, 327–353 (2003)
Freyd, P.: Stable homotopy. In: Proceedings of conference on categorical algebra (La Jolla, CA, 1965), pp. 121–172. Springer, New York (1966)
Happel, D.: Triangulated categories in the representation theory of finite-dimensional algebras. In: London Mathematical Society Lecture Note Series, vol. 119. Cambridge University Press, Cambridge (1988)
Happel D., Keller B., Reiten I.: Bounded derived categories and repetitive algebras. J. Algebra 319(4), 1611–1635 (2008)
Jørgensen P.: Auslander–Reiten theory over topological spaces. Comment. Math. Helv. 79(1), 160–182 (2004)
Jørgensen, P.: Amplitude inequalities for differential graded modules (2006). arXiv:math/0601416v1 [math.RA]
Jørgensen P.: The Auslander–Reiten quiver of a Poincaré duality space. Algebr. Represent. Theory 9(4), 323–336 (2006)
Jørgensen, P.: Calabi-Yau categories and Poincaré duality spaces. In: Trends in Representation Theory of Algebras and Related Topics. (Toruń, 2007). Congress Reports Series, vol. 1, pp. 399–432. European Mathematical Society, Zürich (2008)
Keller B.: Deriving DG categories. Ann. Sci. École Norm. Sup. (4) 27(1), 63–102 (1994)
Reiten, I., Van den Bergh, M.: Noetherian hereditary abelian categories satisfying Serre duality. J. Am. Math. Soc. 2(15), 295–366 (2002, electronic)
Schmidt, K.: Auslander–Reiten theory for simply connected differential graded algebras. PhD thesis, University of Paderborn (2007). arXiv:0801.0651v1[math.RT]
Spaltenstein N.: Resolutions of unbounded complexes. Compos. Math. 65(2), 121–154 (1988)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schmidt, K. Families of Auslander–Reiten components for simply connected differential graded algebras. Math. Z. 264, 43–62 (2010). https://doi.org/10.1007/s00209-008-0451-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-008-0451-1