Skip to main content
Log in

Families of Auslander–Reiten components for simply connected differential graded algebras

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Peter Jørgensen introduced the Auslander–Reiten quiver of a simply connected Poincaré duality space. He showed that its components are of the form \({{\mathbb {Z}}A_\infty}\) and that the Auslander–Reiten quiver of a d-dimensional sphere consists of d − 1 such components. We show that this is essentially the only case where finitely many components appear. More precisely, we construct families of modules, where for each family, each module lies in a different component. Depending on the cohomology dimensions of the differential graded algebras which appear, this is either a discrete family or an n-parameter family for all n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams J.F., Hilton P.J.: On the chain algebra of a loop space. Comment. Math. Helv. 30, 305–330 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  2. Auslander, M.: Functors and morphisms determined by objects. In: Representation theory of algebras (Proc. Conf., Temple University, Philadelphia, PA, 1976). Lecture Notes in Pure Appl. Mathematics, vol. 37, pp. 1–244. Dekker, New York (1978)

  3. Avramov L.L., Foxby H.-B.: Locally Gorenstein homomorphisms. Am. J. Math. 114(5), 1007–1047 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Avramov, L.L., Foxby, H.-B., Halperin, S.: Resolutions for dg modules. Preprint (2008, version from 7 March 2008)

  5. Crawley-Boevey W.W.: On tame algebras and bocses. Proc. Lond. Math. Soc. (3) 56(3), 451–483 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Crawley-Boevey, W.W.: Matrix problems and Drozd’s theorem. Topics in algebra, Part 1 (Warsaw, 1988), vol. 26, pp. 199–222. Banach Center Publ. PWN, Warsaw (1990)

  7. Drozd, J.A.: Tame and wild matrix problems. Representations and quadratic forms (Russian). Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, vol. 154, pp. 39–74 (1979)

  8. Dwyer W.G., Greenlees J.P.C., Iyengar S.: Duality in algebra and topology. Adv. Math. 200(2), 357–402 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Félix Y., Halperin S., Thomas J.-C.: Gorenstein spaces. Adv. Math. 71(1), 92–112 (1988)

    Article  MATH  Google Scholar 

  10. Félix Y., Halperin S., Thomas J.-C.: Rational homotopy theory Graduate. Texts in Mathematics, vol. 205. Springer, New York (2001)

    Google Scholar 

  11. Frankild A., Iyengar S., Jørgensen P.: Dualizing differential graded modules and Gorenstein differential graded algebras. J. Lond. Math. Soc. 68(2), 288–306 (2003)

    Article  MATH  Google Scholar 

  12. Frankild, A., Jørgensen, P.: Homological identities for differential graded algebras II. Part of PhD thesis A. Frankild, (2002)

  13. Frankild A., Jørgensen P.: Gorenstein differential graded algebras. Isr. J. Math. 135, 327–353 (2003)

    Article  MATH  Google Scholar 

  14. Freyd, P.: Stable homotopy. In: Proceedings of conference on categorical algebra (La Jolla, CA, 1965), pp. 121–172. Springer, New York (1966)

  15. Happel, D.: Triangulated categories in the representation theory of finite-dimensional algebras. In: London Mathematical Society Lecture Note Series, vol. 119. Cambridge University Press, Cambridge (1988)

  16. Happel D., Keller B., Reiten I.: Bounded derived categories and repetitive algebras. J. Algebra 319(4), 1611–1635 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jørgensen P.: Auslander–Reiten theory over topological spaces. Comment. Math. Helv. 79(1), 160–182 (2004)

    Article  MathSciNet  Google Scholar 

  18. Jørgensen, P.: Amplitude inequalities for differential graded modules (2006). arXiv:math/0601416v1 [math.RA]

  19. Jørgensen P.: The Auslander–Reiten quiver of a Poincaré duality space. Algebr. Represent. Theory 9(4), 323–336 (2006)

    Article  MathSciNet  Google Scholar 

  20. Jørgensen, P.: Calabi-Yau categories and Poincaré duality spaces. In: Trends in Representation Theory of Algebras and Related Topics. (Toruń, 2007). Congress Reports Series, vol. 1, pp. 399–432. European Mathematical Society, Zürich (2008)

  21. Keller B.: Deriving DG categories. Ann. Sci. École Norm. Sup. (4) 27(1), 63–102 (1994)

    MATH  Google Scholar 

  22. Reiten, I., Van den Bergh, M.: Noetherian hereditary abelian categories satisfying Serre duality. J. Am. Math. Soc. 2(15), 295–366 (2002, electronic)

    Google Scholar 

  23. Schmidt, K.: Auslander–Reiten theory for simply connected differential graded algebras. PhD thesis, University of Paderborn (2007). arXiv:0801.0651v1[math.RT]

  24. Spaltenstein N.: Resolutions of unbounded complexes. Compos. Math. 65(2), 121–154 (1988)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, K. Families of Auslander–Reiten components for simply connected differential graded algebras. Math. Z. 264, 43–62 (2010). https://doi.org/10.1007/s00209-008-0451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0451-1

Keywords

Navigation