Abstract
The Lie group SU(2) endowed with its canonical subriemannian structure appears as a three-dimensional model of a positively curved subelliptic space. The goal of this work is to study the subelliptic heat kernel on it and some related functional inequalities.
Similar content being viewed by others
References
Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses, vol. 10, p. xvi+217. Société Mathématique de France, Paris (2000)
Bakry D., Emery M.: Diffusions hypercontractives. Sémin. Prob. Strasbourg 19, 177–206 (1985)
Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. Lectures on probability theory (Saint-Flour, 1992), pp. 1–114. Lecture Notes in Math., vol. 1581. Springer, Berlin (1994)
Bakry, D.: Functional inequalities for Markov semigroups. Probability measures on groups: recent directions and trends, pp. 91–147, Tata Inst. Fund. Res., Mumbai (2006)
Bakry, D., Baudoin, F., Bonnefont, M., Chafai, D.: On gradient bounds for the heat kernel on the Heisenberg group. Arxiv preprint 0710.3139. J. Funct. Anal. (2007) (to appear)
Bakry D., Ledoux M.: A logarithmic Sobolev form of the Li-Yau parabolic inequality Revista Mat. Iberoamericana 22, 683–702 (2006)
Baudoin F.: An introduction to the geometry of stochastic flows, pp. x+140. Imperial College Press, London (2004)
Bauer R.O.: Analysis of the horizontal Laplacian for the Hopf fibration. Forum Math. 17(6), 903–920 (2005)
Beals R., Gaveau B., Greiner P.: Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J. Math. Pures Appl. 79(7), 633–689 (2000)
Cao H.D., Yau S.T.: Gradient estimates, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields. Math. Zeits. 211, 485–504 (1992)
Cowling M., Sikora A.: A spectral multiplier theorem for a sublaplacian on SU(2). Math. Zeits. 238, 1–36 (2001)
Dooley A.H., Gupta S.K.: The contraction of S 2p-1 to H p-1. Monatsh. Math. 128(3), 237–253 (1999)
Driver B.K., Melcher T.: Hypoelliptic heat kernel inequalities on the Heisenberg group. J. Funct. Anal. 221(2), 340–365 (2005)
Gaveau B.: Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math. 139(1–2), 95–153 (1977)
Gershkovich, V.Ya., Vershik, A.M.: Nonholonomic dynamical Systems, geometry of distributions and variational problems. In: Arnold, V.I., Novikov, S.P. (eds.) Dynamical Systems, vol. VII. Encyclopaedia of Mathematical Sciences, vol. 16 (1994)
Hulanicki A.: The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group. Studia Math. 56(2), 165–173 (1976)
Juillet, N.: Geometric inequalities and generalized Ricci bounds on the Heisenberg group, preprint (2006)
Hino M., Ramirez J.: Small-time Gaussian behavior of symmetric diffusion semigroups. Ann. Probab. 31(3), 1254–1295 (2003)
Léandre R.: Majoration en temps petit de la densité d’une diffusion dégénérée. Probab. Theory Related Fields 74(2), 289–294 (1987)
Léandre R.: Minoration en temps petit de la densité d’une diffusion dégénérée. J. Funct. Anal. 74(2), 399–414 (1987)
Ledoux M.: The geometry of Markov diffusion generators. Prob. Theory. Ann. Fac. Sci. Toulouse Math. (6) 9(2), 305–366 (2000)
Li H.-Q.: Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg. J. Funct. Anal. 236(2), 369–394 (2006)
Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport, preprint arXiv:math/0412127v4 [math.DG]. Ann. Math. (to appear)
Melcher, T.: Hypoelliptic heat kernel inequalities on Lie groups. Stoch. Proc. Appl. (2008) (to appear)
Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications, pp. xx+259. Mathematical Surveys and Monographs, 91. American Mathematical Society, Providence (2002)
Ricci F.: A contraction of SU(2) to the Heisenberg group. Monatsh. Math. 101(3), 211–225 (1986)
Rumin M.: Formes différentielles sur les variétés de contact. J. Differ. Geometry 39(2), 281–330 (1994)
Sturm K.Th.: On the geometry of metric measure spaces I. Acta Math. 196(1), 65–131 (2006)
Sturm K.Th.: On the geometry of metric measure spaces II. Acta Math. 196(1), 133–177 (2006)
Taylor M.E.: Partial Differential Equations, Qualitative Studies of Linear Equations. Applied Mathematical Sciences. Springer, Heidelberg (1996)
von Renesse M.-K., Sturm K.-Th.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baudoin, F., Bonnefont, M. The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds. Math. Z. 263, 647–672 (2009). https://doi.org/10.1007/s00209-008-0436-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-008-0436-0