Skip to main content
Log in

The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The Lie group SU(2) endowed with its canonical subriemannian structure appears as a three-dimensional model of a positively curved subelliptic space. The goal of this work is to study the subelliptic heat kernel on it and some related functional inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses, vol. 10, p. xvi+217. Société Mathématique de France, Paris (2000)

  2. Bakry D., Emery M.: Diffusions hypercontractives. Sémin. Prob. Strasbourg 19, 177–206 (1985)

    MathSciNet  Google Scholar 

  3. Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. Lectures on probability theory (Saint-Flour, 1992), pp. 1–114. Lecture Notes in Math., vol. 1581. Springer, Berlin (1994)

  4. Bakry, D.: Functional inequalities for Markov semigroups. Probability measures on groups: recent directions and trends, pp. 91–147, Tata Inst. Fund. Res., Mumbai (2006)

  5. Bakry, D., Baudoin, F., Bonnefont, M., Chafai, D.: On gradient bounds for the heat kernel on the Heisenberg group. Arxiv preprint 0710.3139. J. Funct. Anal. (2007) (to appear)

  6. Bakry D., Ledoux M.: A logarithmic Sobolev form of the Li-Yau parabolic inequality Revista Mat. Iberoamericana 22, 683–702 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Baudoin F.: An introduction to the geometry of stochastic flows, pp. x+140. Imperial College Press, London (2004)

    MATH  Google Scholar 

  8. Bauer R.O.: Analysis of the horizontal Laplacian for the Hopf fibration. Forum Math. 17(6), 903–920 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Beals R., Gaveau B., Greiner P.: Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J. Math. Pures Appl. 79(7), 633–689 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cao H.D., Yau S.T.: Gradient estimates, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields. Math. Zeits. 211, 485–504 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cowling M., Sikora A.: A spectral multiplier theorem for a sublaplacian on SU(2). Math. Zeits. 238, 1–36 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dooley A.H., Gupta S.K.: The contraction of S 2p-1 to H p-1. Monatsh. Math. 128(3), 237–253 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Driver B.K., Melcher T.: Hypoelliptic heat kernel inequalities on the Heisenberg group. J. Funct. Anal. 221(2), 340–365 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gaveau B.: Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math. 139(1–2), 95–153 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gershkovich, V.Ya., Vershik, A.M.: Nonholonomic dynamical Systems, geometry of distributions and variational problems. In: Arnold, V.I., Novikov, S.P. (eds.) Dynamical Systems, vol. VII. Encyclopaedia of Mathematical Sciences, vol. 16 (1994)

  16. Hulanicki A.: The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group. Studia Math. 56(2), 165–173 (1976)

    MATH  MathSciNet  Google Scholar 

  17. Juillet, N.: Geometric inequalities and generalized Ricci bounds on the Heisenberg group, preprint (2006)

  18. Hino M., Ramirez J.: Small-time Gaussian behavior of symmetric diffusion semigroups. Ann. Probab. 31(3), 1254–1295 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Léandre R.: Majoration en temps petit de la densité d’une diffusion dégénérée. Probab. Theory Related Fields 74(2), 289–294 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Léandre R.: Minoration en temps petit de la densité d’une diffusion dégénérée. J. Funct. Anal. 74(2), 399–414 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ledoux M.: The geometry of Markov diffusion generators. Prob. Theory. Ann. Fac. Sci. Toulouse Math. (6) 9(2), 305–366 (2000)

    MATH  MathSciNet  Google Scholar 

  22. Li H.-Q.: Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg. J. Funct. Anal. 236(2), 369–394 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport, preprint arXiv:math/0412127v4 [math.DG]. Ann. Math. (to appear)

  24. Melcher, T.: Hypoelliptic heat kernel inequalities on Lie groups. Stoch. Proc. Appl. (2008) (to appear)

  25. Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications, pp. xx+259. Mathematical Surveys and Monographs, 91. American Mathematical Society, Providence (2002)

  26. Ricci F.: A contraction of SU(2) to the Heisenberg group. Monatsh. Math. 101(3), 211–225 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rumin M.: Formes différentielles sur les variétés de contact. J. Differ. Geometry 39(2), 281–330 (1994)

    MATH  MathSciNet  Google Scholar 

  28. Sturm K.Th.: On the geometry of metric measure spaces I. Acta Math. 196(1), 65–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sturm K.Th.: On the geometry of metric measure spaces II. Acta Math. 196(1), 133–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Taylor M.E.: Partial Differential Equations, Qualitative Studies of Linear Equations. Applied Mathematical Sciences. Springer, Heidelberg (1996)

    Google Scholar 

  31. von Renesse M.-K., Sturm K.-Th.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Baudoin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudoin, F., Bonnefont, M. The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds. Math. Z. 263, 647–672 (2009). https://doi.org/10.1007/s00209-008-0436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0436-0

Keywords

Navigation