Skip to main content
Log in

The Hermite–Krichever Ansatz for Fuchsian equations with applications to the sixth Painlevé equation and to finite-gap potentials

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Several results including integral representation of solutions and Hermite– Krichever Ansatz on Heun’s equation are generalized to a certain class of Fuchsian differential equations, and they are applied to equations which are related with physics. We investigate linear differential equations that produce Painlevé equation by monodromy preserving deformation and obtain solutions of the sixth Painlevé equation which include Hitchin’s solution. The relationship with finite-gap potential is also discussed. We find new finite-gap potentials. Namely, we show that the potential which is written as the sum of the Treibich–Verdier potential and additional apparent singularities of exponents − 1 and 2 is finite-gap, which extends the result obtained previously by Treibich. We also investigate the eigenfunctions and their monodromy of the Schrödinger operator on our potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belokolos E.D., Enolskii V.Z.: Reduction of Abelian functions and algebraically integrable systems. II. J. Math. Sci. (New York) 108, 295–374 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Belokolos E.D., Eilbeck J.C., Enolskii V.Z., Salerno M.: Exact energy bands and Fermi surfaces of separable abelian potentials. J. Phys. A 34, 943–959 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Craster R.V., Hoang V.H.: Applications of Fuchsian differential equations to free boundary problems. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1972), 1241–1252 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deift P., Its A., Kapaev A., Zhou X.: On the algebro-geometric integration of the Schlesinger equations. Commun. Math. Phys. 203, 613–633 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gesztesy F., Weikard R.: On Picard potentials. Differ. Integr. Equ. 8, 1453–1476 (1995)

    MATH  MathSciNet  Google Scholar 

  6. Gesztesy F., Weikard R.: Treibich–Verdier potentials and the stationary (m)KdV hierarchy. Math. Z. 219, 451–476 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gesztesy F., Weikard R.: Picard potentials and Hill’s equation on a torus. Acta Math. 176, 73–107 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gesztesy F., Weikard R.: Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies—an analytic approach. Bull. Am. Math. Soc. (N.S.) 35(4), 271–317 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hitchin N.J.: Twistor spaces Einstein metrics and isomonodromic deformations. J. Differ. Geom. 42, 30–112 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Ince E.L.: Further investigations into the periodic Lamé functions. Proc. R. Soc. Edinb. 60, 83–99 (1940)

    MATH  MathSciNet  Google Scholar 

  11. Ince E.L.: Ordinary Differential Equations. Dover Publications, New York (1944)

    MATH  Google Scholar 

  12. Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painlevé. A Modern Theory of Special Functions. Aspects of Mathematics, E16. Friedr. Vieweg & Sohn, Braunschweig (1991)

  13. Kitaev, A.V., Korotkin, D.A.: On solutions of the Schlesinger equations in terms of Θ-functions. Int. Math. Res. Notices 1998, vol. 17, pp. 877–905 (1998)

  14. Krichever I.M.: Elliptic solutions of the Kadomcev–Petviasvili equations, and integrable systems of particles. Funct. Anal. Appl. 14, 282–290 (1980)

    Article  Google Scholar 

  15. Maier R.S.: Lamé polynomials, hyperelliptic reductions and Lamé band structure. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366(1867), 1115–1153 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Manin, Y.I.: Sixth Painlevé equation, universal elliptic curve, and mirror of P 2. Geometry of differential equations, 131–151. Am. Math. Soc. Transl. Ser. 2, 186, Am. Math. Soc., Providence, RI (1998)

  17. Ronveaux A., (eds): Heun’s Differential Equations. Oxford Science Publications. Oxford University Press, Oxford (1995)

    Google Scholar 

  18. Saito M.-H., Terajima H.: Nodal curves and Riccati solutions of Painlevé equations. J. Math. Kyoto Univ. 44, 529–568 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Smirnov, A.O.: Elliptic solitons and Heun’s equation, The Kowalevski property, pp. 287–305. CRM Proc. Lecture Notes, vol. 32, Am. Math. Soc., Providence (2002)

  20. Smirnov A.O.: Finite-gap solutions of the Fuchsian equations. Lett. Math. Phys. 76, 297–316 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Suzuki H., Takasugi E., Umetsu H.: Perturbations of Kerr-de Sitter black holes and Heun’s equations. Progr. Theor. Phys. 100, 491–505 (1998)

    Article  MathSciNet  Google Scholar 

  22. Takasaki K.: Painlevé–Calogero correspondence revisited. J. Math. Phys. 42(3), 1443–1473 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Takemura K.: The Heun equation and the Calogero–Moser–Sutherland system I: the Bethe Ansatz method. Commun. Math. Phys. 235, 467–494 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Takemura K.: The Heun equation and the Calogero–Moser–Sutherland system II: the perturbation and the algebraic solution. Electron. J. Differ. Equ. 15, 1–30 (2004)

    Google Scholar 

  25. Takemura K.: The Heun equation and the Calogero–Moser–Sutherland system III: the finite gap property and the monodromy. J. Nonlinear Math. Phys. 11, 21–46 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Takemura K.: The Heun equation and the Calogero–Moser–Sutherland system IV: the Hermite–Krichever Ansatz. Commun. Math. Phys. 258, 367–403 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Takemura K.: Integral representation of solutions to Fuchsian system and Heun’s equation. J. Math. Anal. Appl. 342, 52–69 (2008)

    MATH  MathSciNet  Google Scholar 

  28. Treibich A.: Hyperelliptic tangential covers, and finite-gap potentials. Russian Math. Surv. 56(6), 1107–1151 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Treibich A., Verdier J.-L.: Revetements exceptionnels et sommes de 4 nombres triangulaires (French). Duke Math. J. 68, 217–236 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tsuda T., Okamoto K., Sakai H.: Folding transformations of the Painlevé equations. Math. Ann. 331(4), 713–738 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Weikard R.: On Hill’s equation with a singular complex-valued potential. Proc. Lond. Math. Soc. 76(3), 603–633 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichi Takemura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takemura, K. The Hermite–Krichever Ansatz for Fuchsian equations with applications to the sixth Painlevé equation and to finite-gap potentials. Math. Z. 263, 149–194 (2009). https://doi.org/10.1007/s00209-008-0415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0415-5

Mathematics Subject Classification (2000)

Navigation