Skip to main content
Log in

Distances to spaces of Baire one functions

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Given a metric space X and a Banach space (E, ||·||) we use an index of σ-fragmentability for maps \({f \in E^X}\) to estimate the distance of f to the space B 1(X, E) of Baire one functions from X into (E, ||·||). When X is Polish we use our estimations for these distances to give a quantitative version of the well known Rosenthal’s result stating that in \({B_1(X, \mathbb{R})}\) the pointwise relatively countably compact sets are pointwise relatively compact. We also obtain a quantitative version of a Srivatsa’s result that states that whenever X is metric any weakly continuous function \({f \in E^X}\) belongs to B 1(X, E): our result here says that for an arbitrary \({f \in E^X}\) we have

$$d(f, B_1(X, E))\leq 2 \sup_{x^*\in B_{E^{\ast}}}{\rm osc}(x^*\circ f),$$

where osc\({(x^{*} \circ f)}\) stands for the supremum of the oscillations of \({x^{*} \circ f}\) at all points \({x \in X}\) . As a consequence of the above we prove that for functions in two variables \({f : X \times K \to \mathbb{R}}\) , X complete metric and K compact, there exists a G δ-dense set \({D \subset X}\) such that the oscillation of f at each \({(x, k) \in D \times K}\) is bounded by the oscillations of the partial functions f x and f k. A representative result in this direction, that we prove using games, is the following: if X is a σβ-unfavorable space and K is a compact space, then there exists a dense G δ-subset D of X such that, for each \({(y, k) \in D\times K}\) ,

$${\rm osc}(f,(y,k))\le 6\sup_{x\in X}{\rm osc}(f_x)+8\sup_{k\in K}{\rm osc}(f^k).$$

When the right hand side of the above inequality is zero we are dealing with separately continuous functions \({f : X \times K \to \mathbb{R}}\) and we obtain as a particular case some well-known results obtained by the third named author in the mid 1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angosto C., Cascales B.: The quantitative difference between countable compactness and compactness. J. Math. Anal. 343(1), 479–491 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence (2000). MR 2001b:46001

  3. Bouziad A.: Une classe d’espaces co-Namioka. C. R. Acad. Sci. Paris Sér. I Math. 310(11), 779–782 (1990) MR1054296 (91e:54066)

    MATH  MathSciNet  Google Scholar 

  4. Cascales B., Marciszewski W., Raja M.: Distance to spaces of continuous functions. Topol. Appl. 153(13), 2303–2319 (2006) MR2238732

    Article  MATH  MathSciNet  Google Scholar 

  5. Christensen J.P.R.: Joint continuity of separately continuous functions. Proc. Am. Math. Soc. 82(3), 455–461 (1981) MR612739 (82h:54012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Deville R., Godefroy G.: Some applications of projective resolution of identity. Proc. Lond. Math. Soc. 67, 183–199 (1993) MR1218125 (94f:46018)

    Article  MATH  MathSciNet  Google Scholar 

  7. Engelking, R.: General topology, PWN—Polish Scientific Publishers, Warsaw, Translated from the Polish by the author, Monografie Matematyczne, Tom 60. [Mathematical Monographs, vol. 60] (1977). MR 58 #18316b

  8. Fabian M., Hájek P., Montesinos V., Zizler V.: A quantitative version of Krein’s theorem. Rev. Mat. Iberoamericana 21(1), 237–248 (2005) MR2155020 (2006b:46011)

    MATH  MathSciNet  Google Scholar 

  9. Granero A.S.: An extension of the Krein-Smulian theorem. Rev. Mat. Iberoamericana 22(1), 93–110 (2005)

    MathSciNet  Google Scholar 

  10. Granero A.S., Hájek P., Montesinos Santalucía V.: Convexity and w*-compactness in Banach spaces. Math. Ann. 328(4), 625–631 (2004) MR2047643 (2005c:46020)

    Article  MATH  MathSciNet  Google Scholar 

  11. Granero A.S., Sánchez M.: Convexity, compactness and distances. In: Castillo, J.M.F., Jonhson, W.R. (eds) Methods in Banach spaces. Proceedings of the 3th Conference in Cáceres. Lecture Notes Series of the London Mathematical Society, vol. 337, pp. 215–237. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  12. Granero, A.S., Sánchez, M.: The class of universally Krein-Šmulian Banach spaces. Bull. Lond. Math. Soc. 39(4), 529–540

  13. Gruenhage G.: Covering properties on X 2\Δ, W-sets, and compact subsets of Σ-products. Topol. Appl. 17(3), 287–304 (1984) MR752278 (86e:54029)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hansell R.W., Jayne J.E., Talagrand M.: First class selector for weakly upper semi-continuous multi-valued maps in Banach spaces. J. Reine Angew. Math 361, 201–220 (1985)

    MATH  MathSciNet  Google Scholar 

  15. Jayne J.E., Orihuela J., Pallarés A.J., Vera G.: σ-fragmentability of multivalued maps and selection theorems. J. Funct. Anal. 117(2), 243–273 (1993) MR 94m:46023

    Article  MATH  MathSciNet  Google Scholar 

  16. Krom M.R.: Cartesian products of metric Baire spaces. Proc. Amer. Math. Soc. 42, 588–594 (1974) MR0334138 (48 #12457)

    Article  MATH  MathSciNet  Google Scholar 

  17. Namioka I.: Separate continuity and joint continuity. Pacific J. Math. 51, 515–531 (1974) MR 51 #6693

    MATH  MathSciNet  Google Scholar 

  18. Rosenthal H.P.: A characterization of Banach spaces containing l 1. Proc. Nat. Acad. Sci. USA 71, 2411–2413 (1974) MR 50 #10773

    Article  MATH  Google Scholar 

  19. Saint-Raymond J.: Jeux topologiques et espaces de Namioka. Proc. Am. Math. Soc. 87(3), 499–504 (1983) MR684646 (83m:54060)

    Article  MATH  MathSciNet  Google Scholar 

  20. Srivatsa V.V.: Baire class 1 selectors for upper semicontinuous set-valued maps. Trans. Am. Math. Soc. 337(2), 609–624 (1993) MR 93h:54013

    Article  MATH  MathSciNet  Google Scholar 

  21. Todorčević, S.: Topics in topology. Lecture Notes in Mathematics, vol. 1652. Springer, Berlin (1997). MR 98g:54002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Namioka.

Additional information

C. Angosto, B. Cascales and I. Namioka are supported by the Spanish grants MTM2005-08379 (MEC & FEDER) and 00690/PI/04 (Fund. Séneca). C. Angosto is also supported by the FPU grant AP2003-4443 (MEC & FEDER).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angosto, C., Cascales, B. & Namioka, I. Distances to spaces of Baire one functions. Math. Z. 263, 103–124 (2009). https://doi.org/10.1007/s00209-008-0412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0412-8

Keywords

Mathematics Subject Classification (2000)

Navigation