Skip to main content
Log in

Nearly tight frames and space-frequency analysis on compact manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let M be a smooth compact oriented Riemannian manifold of dimension n without boundary, and let Δ be the Laplace–Beltrami operator on M. Say \({0 \neq f \in \mathcal{S}(\mathbb R^+)}\) , and that f (0)  =  0. For t  >  0, let K t (x, y) denote the kernel of f (t 2 Δ). Suppose f satisfies Daubechies’ criterion, and b  >  0. For each j, write M as a disjoint union of measurable sets E j,k with diameter at most ba j, and measure comparable to \({(ba^j)^n}\) if ba j is sufficiently small. Take x j,kE j,k. We then show that the functions \({\phi_{j,k}(x)=\mu(E_{j,k})^{1/2} \overline{K_{a^j}}(x_{j,k},x)}\) form a frame for (I  −  P)L 2(M), for b sufficiently small (here P is the projection onto the constant functions). Moreover, we show that the ratio of the frame bounds approaches 1 nearly quadratically as the dilation parameter approaches 1, so that the frame quickly becomes nearly tight (for b sufficiently small). Moreover, based upon how well-localized a function F ∈ (I  −  P)L 2 is in space and in frequency, we can describe which terms in the summation \({F \sim SF = \sum_j \sum_k \langle F,\phi_{j,k} \rangle \phi_{j,k}}\) are so small that they can be neglected. If n  =  2 and M is the torus or the sphere, and f (s)  =  se s (the “Mexican hat” situation), we obtain two explicit approximate formulas for the φ j,k, one to be used when t is large, and one to be used when t is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marinucci, D., Pietrobon, D., Balbi, A., Baldi, P., Cabella, P., Kerkyacharian, G., Natoli, P., Picard, D., Vittorio, N.: Spherical needlets for CMB data analysis, arXiv:0707.0844 (2007)

  2. Daubechies I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  3. Fabes E., Mitrea I., Mitrea M.: On the boundedness of singular integrals. Pac. J. Math. 189, 21–29 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. David G., Journé J.-L.: A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. 120, 371–397 (1984)

    Article  Google Scholar 

  5. Doroshkevich A.G., Naselsky P.D., Verkhodanov O.V., Novikov D.I., Turchaninov I.V., Novikov I.D., Christensen P.R., Chiang L.-Y.: Gauss–Legendre sky pixelization (GLESP) for CMB maps. Int. J. Mod. Phys. D. 14, 275–290 (2005)

    Article  MATH  Google Scholar 

  6. Frazier M., Jawerth B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Frazier M., Jawerth B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93, 34–70 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Geller D., Mayeli A.: Continuous wavelets and frames on stratified Lie groups I. J. Fourier Anal. Appl. 12, 543–579 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Geller, D., Mayeli, A.: Continuous wavelets on manifolds. Math. Z. (2008) (to appear)

  10. Geller, D., Mayeli, A.: Besov Spaces and Frames on Compact Manifolds, available on arXiv

  11. Gilbert J.E., Han Y.S., Hogan J.A., Lakey J.D., Weiland D., Weiss G.: Smooth molecular decompositions of functions and singular integral operators. Memoirs AMS 156, 742 (2002)

    MathSciNet  Google Scholar 

  12. Guilloux, F., Faÿ, G., Cardoso, J.-F.: Practical wavelet design on the sphere, arXiv:0706.2598 (2007)

  13. Han Y.: Discrete Calderón-type reproducing formula. Acta Math. Sinica 16, 277–294 (2000)

    Article  MATH  Google Scholar 

  14. Narcowich F.J., Petrushev P., Ward J.: Localized tight frames on spheres. SIAM J. Math. Anal. 38, 574–594 (2006)

    Article  MathSciNet  Google Scholar 

  15. Narcowich F.J., Petrushev P., Ward J.: Decomposition of Besov and Triebel–Lizorkin spaces on the sphere. J. Func. Anal. 238, 530–564 (2006)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryl Geller.

Additional information

A. Mayeli was partially supported by the Marie Curie Excellence Team Grant MEXT-CT-2004-013477, Acronym MAMEBIA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geller, D., Mayeli, A. Nearly tight frames and space-frequency analysis on compact manifolds. Math. Z. 263, 235–264 (2009). https://doi.org/10.1007/s00209-008-0406-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0406-6

Keywords

Mathematics Subject Classification (2000)

Navigation