Skip to main content
Log in

Extrinsic estimates for eigenvalues of the Dirac operator

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For a compact spin manifold M isometrically embedded into Euclidean space, we derive the extrinsic estimates from above and below for eigenvalues of the square of the Dirac operator, which depend on the second fundamental form of the embedding. We also show the bounds of the ratio of the eigenvalues. Since the unit sphere and the projective spaces admit the standard embedding into Euclidean spaces, we also obtain the corresponding results for their compact spin submanifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anghel N.: Extrinsic upper bounds for eigenvalues of Dirac-type operators. Proc. Am. Math. Soc. 117, 501–509 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ashbaugh M.S.: Isoperimetric and universal inequalities for eigenvalues. In: Davies, E.B., Safalov, Y(eds) Spectral theory and geometry (Edinburgh,1998), London Math. Soc. Lecture Notes, vol. 273, pp. 95–139. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Ashbaugh M.S.: Universal eigenvalue bounds of Payne–Polya–Weinberger, Hile–Prottter, and H. C. Yang. Proc. Indian Acad. Sci. Math. Sci. 112, 3–30 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ashbaugh M.S., Hermi L.: A unified approach to universal inequalities for eigenvalues of elliptic operators. Pac. J. Math. 217, 201–219 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bär C.: Extrinsic bounds for eigenvalues of the Dirac operator. Ann. Glob. Anal. Geom. 16, 573–596 (1998)

    Article  MATH  Google Scholar 

  6. Baum H.: An upper bound for the first eigenvalue of the Dirac operator on compact spin manifolds. Math. Z. 206, 409–422 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bunke U.: Upper bounds of small eigenvalues of the Dirac operator and isometric immersions. Ann. Glob. Anal. Geom. 9, 109–116 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen B.Y.: Todal Mean Curvature and Submanifolds of Finte Type. World Scientific, Singapore (1984)

    Google Scholar 

  9. Chen D.G., Sun H.J.: Inequalities of eigenvalues for the dirac operator on compact complex spin submanifolds in complex projective spaces. Chin. Ann. Math. Ser. B 29(2), 165–178 (2008)

    Article  MathSciNet  Google Scholar 

  10. Cheng Q.M., Yang H.C.: Estimates on eigenvalues of Laplacian. Math. Ann. 331, 445–460 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cheng Q.M., Yang H.C.: Bounds on eigenvalues of Dirichlet Laplacian. Math. Ann. 337, 159–175 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Colbois B.: Une inégalité du type Payne–Polya–Weinberger pour le laplacien brut. Proc. Am. Math. Soc. 131(12), 3937–3944 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Friedrich T.: Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25. AMS, Providence (2000)

    Google Scholar 

  14. Gilkey P.B.: Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem. 2nd edn. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  15. Hile G.N., Protter M.H.: Inequalities for eigenvalues of the Laplacian. Indiana Univ. Math. J. 29, 523–538 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lee J.M.: The gaps in the spectrum of the Laplace–Beltrami operator. Houston J. Math. 17, 1–24 (1991)

    MATH  MathSciNet  Google Scholar 

  17. Li P.: Eigenvalue estimates on homogeneous manifolds. Comment. Math. Helv. 55, 347–363 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lawson H., Michelsohn M.: Spin Geometry. Princenton University Press, Princenton (1989)

    MATH  Google Scholar 

  19. Payne G.E., Polya G., Weinberger H.F.: On the ration of consecutive eigenvalue. J. Math. Phys. 35, 289–298 (1956)

    MATH  MathSciNet  Google Scholar 

  20. Yang, H.C.: An estimate of the differance between consecutive eigenvalues, preprint IC/91/60 of ICTP,Trieste (1991)

  21. El Soufi, A., Harrell, E.M., Ilias, S.: Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds, arXiv: 0706.0910

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daguang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D. Extrinsic estimates for eigenvalues of the Dirac operator. Math. Z. 262, 349–361 (2009). https://doi.org/10.1007/s00209-008-0376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0376-8

Keywords

Navigation