Skip to main content
Log in

Taylor formula for homogenous groups and applications

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we provide a Taylor formula with integral remainder in the setting of homogeneous groups in the sense of Folland and Stein (Hardy spaces on homogeneous groups. Mathematical notes, vol 28. Princeton University Press, Princeton, 1982). This formula allows us to give a simplified proof of the so-called ‘Taylor inequality’. As a by-product, we furnish an explicit expression for the relevant Taylor polynomials. Applications are provided. Among others, it is given a sufficient condition for the real-analiticity of a function whose higher order derivatives (in the sense of the Lie algebra) satisfy a suitable growth condition. Moreover, we prove the ‘L-harmonicity’ of the Taylor polynomials related to a ‘L-harmonic’ function, when L is a general homogenous left-invariant differential operator on a homogeneous group. (This result is one of the ingredients for obtaining Schauder estimates related to L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini G., Vessella S.: Local behavior of solutions to parabolic equations. Comm. Partial Diff. Equ. 13(9), 1041–1058 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio L., Magnani V.: Weak differentiability of BV functions on stratified groups. Math. Z. 245, 123–153 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arena G., Caruso A., Causa A.: Taylor formula for Carnot groups and applications. Matematiche (Catania) 60, 375–383 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Arena, G., Caruso, A., Causa, A.: Taylor formulas on step two Carnot groups. Preprint (2007)

  5. Bers L.: Local behavior of solutions of general linear elliptic equations. Comm. Pure Appl. Math. 8, 473–496 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bieske T.: On ∞-harmonic functions on the Heisenberg group. Commun. Partial Diff. Equ. 27, 727–761 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified lie groups and potential theory for their sub-laplacians. Springer Monographs in Mathematics. Springer, New York xxvi (2007). ISBN 978-3-540-71896-3/hbk

  8. Caffarelli L.A.: Elliptic second order equations. Rend. Sem. Mat. Fis. Milano 58, 253–284 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caffarelli L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. 130, 189–213 (1989)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. Am. Math. Soc. Colloquium Publications, vol 43. Am. Math. Soc. Providence, RI (1995)

  11. Calderón A.P., Zygmund A.Z.: On the differentiability of functions which are of bounded variation in Tonelli’s sense. Rev. Un. Mat. Argent. 20, 102–121 (1960)

    Google Scholar 

  12. Capogna, L., Han, Q.: Pointwise Schauder estimates for second order linear equations in Carnot groups. Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math., vol. 320, pp. 45–69. Am. Math. Soc., Providence, RI (2003)

  13. Folland G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13, 161–207 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. Folland G.B., Stein E.M.: Hardy spaces on homogeneous groups. Mathematical Notes, vol. 28. Princeton University Press, Princeton (1982)

    Google Scholar 

  15. Gutiérrez, C.E.: Personal communication

  16. Gutiérrez, C.E., Lanconelli, E.: Schauder estimates for second order operators on Lie groups (in preparation)

  17. Han Q.: On the Schauder estimates of solutions to parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27, 1–26 (1998)

    MATH  MathSciNet  Google Scholar 

  18. Han Q.: Schauder estimates for elliptic operators with applications to nodal sets. J. Geom. Anal. 10, 455–480 (2000)

    MATH  MathSciNet  Google Scholar 

  19. Kolmogorov A.N.: Zufällige Bewegungen. Ann. Math. 35, 116–117 (1934)

    Article  MathSciNet  Google Scholar 

  20. Lanconelli E., Kogoj A.E.: An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations. Mediterr. J. Math. 1, 51–80 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lanconelli E., Polidoro S.: On a class of hypoelliptic evolution operators. Rend. Sem. Mat. Univ. Politec. Torino 52, 29–63 (1994)

    MATH  MathSciNet  Google Scholar 

  22. Lu G., Manfredi J.J., Stroffolini B.: Convex functions on the Heisenberg group. Calc. Var. Partial Diff. Equ. 19, 1–22 (2004)

    Article  MathSciNet  Google Scholar 

  23. Manfredi, J.J.: Nonlinear subelliptic equations on Carnot groups. III School on Analysis and Geometry in Metric Spaces, Trento, May 2003. Availbale at: http://www.pitt.edu/~manfredi/papers/fullynonlsubtrentofinal.pdf

  24. Manfredi J.J., Stroffolini B.: A version of the Hopf-Lax formula in the Heisenberg group. Commun. Partial Diff. Equ. 27, 1139–1159 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rothschild L.P., Stein E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  26. Varopoulos N.T., Saloff-Coste L., Coulhon T.: Analysis and geometry on groups. Cambridge Tracts in Mathematics, vol. 100. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  27. Wang L.: On the regularity theory of fully nonlinear parabolic equations. I. Comm. Pure Appl. Math. 45, 27–76 (1992)

    Article  MATH  Google Scholar 

  28. Wang L.: On the regularity theory of fully nonlinear parabolic equations. II. Comm. Pure Appl. Math. 45, 141–178 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bonfiglioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonfiglioli, A. Taylor formula for homogenous groups and applications. Math. Z. 262, 255–279 (2009). https://doi.org/10.1007/s00209-008-0372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0372-z

Mathematics Subject Classification (2000)

Navigation