Skip to main content
Log in

Residue currents constructed from resolutions of monomial ideals

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Given a free resolution of an ideal J of holomorphic functions, one can construct a vector-valued residue current R, whose annihilator is precisely J. In this paper we compute R in case J is a monomial ideal and the resolution is a cellular resolution in the sense of Bayer and Sturmfels. A description of R is given in terms of the underlying polyhedral cell complex and it is related to irreducible decompositions of J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson M.: Residue currents and ideals of holomorphic functions. Bull. Sci. Math. 128(6), 481–512 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andersson M., Wulcan E.: Residue currents with prescribed annihilator ideals. Ann. Sci. École Norm. Sup. 40(6), 985–1007 (2007)

    MATH  MathSciNet  Google Scholar 

  3. Andersson, M., Wulcan, E.: Decomposition of residue currents. Preprint, arXiv:0710.2016

  4. Andersson, M., Samuelsson, H.: Koppelman formulas and existence theorems for the \({\bar \partial}\) -equation on analytic varieties. Preprint, Göteborg, available at arXiv:0801.0710

  5. Bayer D., Sturmfels B.: Cellular resolutions of monomial modules. J. Reine Angew. Math. 502, 123–140 (1998)

    MATH  MathSciNet  Google Scholar 

  6. Bayer D., Peeva I., Sturmfels B.: Monomial resolutions. Math. Res. Lett. 5(1–2), 31–46 (1998)

    MATH  MathSciNet  Google Scholar 

  7. Berenstein, C.A., Gay, R., Vidras, A., Yger, A.: Residue Currents and Bezout Identities. Progress in Mathematics, vol. 114. Birkhäuser Verlag, Basel (1993)

  8. Berenstein C., Yger A.: Effective Bezout identities in Q[z 1,...,z n ]. Acta Math. 166, 69–120 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berndtsson B., Passare M.: Integral formulas and an explicit version of the fundamental principle. J. Funct. Anal. 84, 358–372 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Björk, J.-E.: Residues and \({\mathcal D}\) -modules. The Legacy of Niels Henrik Abel, pp. 605–651. Springer, Berlin (2004)

  11. Coleff, N.R., Herrera, M.E.: Les Courants Résiduels Associés à une Forme Méromorphe. Lect. Notes in Math, vol. 633. Berlin, Heidelberg, New York (1978)

  12. Dickenstein A., Sessa C.: Canonical representatives in moderate cohomology. Invent. Math. 80, 417–434 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

  14. Eisenbud, D.: The Geometry of Syzygies. A Second Course in Commutative Algebra and Algebraic Geometry, Graduate Texts in Mathematics, vol. 229. Springer, New York (2005)

  15. Khovanskii A.G.: Newton polyhedra and toroidal varieties. Funct. Anal. Appl. 11, 289–295 (1978)

    Article  Google Scholar 

  16. Miller, E.: Alexander duality for monomial ideals and their resolutions. Preprint, arXiv:math.AC/9812095

  17. Miller E., Sturmfels B.: Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)

    Google Scholar 

  18. Miller E., Sturmfels B., Yanagawa K.: Generic and cogeneric monomial ideals, Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). J. Symbolic Comput. 29(4–5), 691–708 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Passare M.: Residues, currents, and their relation to ideals of holomorphic functions. Math. Scand. 62(1), 75–152 (1988)

    MATH  MathSciNet  Google Scholar 

  20. Passare M., Tsikh A., Yger A.: Residue currents of the Bochner-Martinelli type. Publ. Mat. 44, 85–117 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Sturmfels, B.: Solving Systems of Polynomial Equations. In: CBMS Regional Conference Series in Mathematics, 97. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2002)

  22. Swanson, I.: Primary decompositions. Lecture notes. http://www.reed.edu/~iswanson/primdec.pdf

  23. Taylor, D.: Ideals generated by monomials in an R-sequence. Ph.D. thesis, University of Chicago (1966)

  24. Teissier, B.: Monomial Ideals, Binomial Ideals, Polynomial Ideals. Trends in Commutative Algebra, Math. Sci. Res. Inst. Publ., vol. 51, pp. 211–246. Cambridge University Press, Cambridge (2004)

  25. Varchenko A.N.: Newton polyhedra and estimating of oscillating integrals. Funct. Anal. Appl. 10, 175–196 (1976)

    Article  MATH  Google Scholar 

  26. Wulcan E.: Residue currents of monomial ideals. Indiana Univ. Math. J. 56(1), 365–388 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wulcan, E.: Residue currents and their annihilator ideals. Ph.D. thesis, Chalmers University of Technology (2007)

  28. Ziegler G.: Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Wulcan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wulcan, E. Residue currents constructed from resolutions of monomial ideals. Math. Z. 262, 235–253 (2009). https://doi.org/10.1007/s00209-008-0371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0371-0

Mathematics Subject Classification (2000)

Navigation