Skip to main content

Advertisement

Log in

Spectral theory of Volterra-composition operators

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Given a Lebesgue measurable self-map \({\varphi}\) of the interval [0, 1], the Volterra- composition operator is defined as \({(V_\varphi)(x)=\int\limits_0^{\varphi(x)}f(t)\,dt, \quad f \in L^p[0,1],\,\, 1\leq p \leq \infty.}\) We develop the spectral theory of these operators. In particular, for a class of natural symbols \({\varphi}\) , finiteness of the spectrum is characterized and formulae for the trace and the convergence exponent of eigenvalues are provided. The positivity of the spectrum as well as the analyticity of the eigenfunctions are also treated. The theory of entire functions as well as solving some Cauchy Problems will play a fundamental role in this theory. We also supply some examples of symbols \({\varphi}\) to which the theory can be applied and, in particular, eigenvalues and eigenfunctions are computed explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conway J.B.: A course in Functional Analysis, 2nd edn. Springer, New York (1990)

    MATH  Google Scholar 

  2. Gohberg, I., Kreĭ n, M.: Introduction to the theory of non-selfadjoint operators. Translations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence (1969)

  3. Halmos P.R.: A Hilbert Problem Book. Van Nostrand Inc., New York (1967)

    MATH  Google Scholar 

  4. Halmos P.R., Sunder V.S.: Bounded Integral Operators on L 2 spaces. Springer, New York (1978)

    MATH  Google Scholar 

  5. Herrero D.: Quasidiagonality, similarity and approximation by nilpotent operators. Indiana Univ. Math. J. 30, 199–233 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Karlin S.: Total Positivity. Stanford University Press, Stanford (1968)

    MATH  Google Scholar 

  7. Kreĭn, M., Rutman, M.: Linear operators leaving invariant a cone in a Banach space, vol. 26. Amer. Math. Soc., Providence (1950)

  8. Lebedev N.N.: Special Fssunctions and their Applications. Prentice-Hall Inc., Englewood Cliffs (1965)

    Google Scholar 

  9. Levin B.Ja.: Distribution of Zeros of Entire Functions. AMS Providence, Rhode Island (1980)

    Google Scholar 

  10. Meyer-Nieberg P.: Banach Lattices. Springer, Berlin (1991)

    MATH  Google Scholar 

  11. Minc H.: Nonnegative Matrices. Wiley, New York (1987)

    Google Scholar 

  12. Newburgh J.D.: The variation of the spectra. Duke Math. J. 18, 165–176 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pietsch A.: Eigenvalues and s-Numbers. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  14. Rudin W.: Real and Complex Analysis. McGraw-Hill, New York (1971)

    Google Scholar 

  15. Rudin W.: Functional Analysis. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  16. Sadovnichiĭ V.A.: Theory of Operators. Consultants Bureau, New York (1991)

    MATH  Google Scholar 

  17. Schwarz L.: Analyse Mathematique. Hermann, Paris (1967)

    Google Scholar 

  18. Szegö G.: Orthogonal polynomials, vol. 23. American Mathematical Society Colloquium Publications, Buffalo (1939)

    Google Scholar 

  19. Tong Y.S.: Quasinilpotent integral operators. Acta Math. Sinica 32, 727–735 (1989)

    MATH  MathSciNet  Google Scholar 

  20. Watson G.N.: A treatise on the Theory of Bessel functions. Cambridge University Press, New York (1944)

    MATH  Google Scholar 

  21. Whitley R.: The spectrum of a Volterra composition operator. Integral Equat. Oper. Theory 10, 146–149 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Montes-Rodríguez.

Additional information

Partially supported by Plan Nacional I+D+I grant no. MTM2006-09060, Junta de Andalucía FQM-260 and P06-FQM-02225.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montes-Rodríguez, A., Rodríguez-Martínez, A. & Shkarin, S. Spectral theory of Volterra-composition operators. Math. Z. 261, 431–472 (2009). https://doi.org/10.1007/s00209-008-0365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0365-y

Keywords

Mathematics Subject Classification (2000)

Navigation