Skip to main content
Log in

Quasiperiodic spectra and orthogonality for iterated function system measures

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We extend classical basis constructions from Fourier analysis to attractors for affine iterated function systems (IFSs). This is of interest since these attractors have fractal features, e.g., measures with fractal scaling dimension. Moreover, the spectrum is then typically quasi-periodic, but non-periodic, i.e., the spectrum is a “small perturbation” of a lattice. Due to earlier research on IFSs, there are known results on certain classes of spectral duality-pairs, also called spectral pairs or spectral measures. It is known that some duality pairs are associated with complex Hadamard matrices. However, not all IFSs X admit spectral duality. When X is given, we identify geometric conditions on X for the existence of a Fourier spectrum, serving as the second part in a spectral pair. We show how these spectral pairs compose, and we characterize the decompositions in terms of atoms. The decompositions refer to tensor product factorizations for associated complex Hadamard matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bratteli O. and Jorgensen P.E.T. (1999). Iterated function systems and permutation representations of the Cuntz algebra. Mem. Am. Math. Soc. 139(663): x+89

    MathSciNet  Google Scholar 

  2. Bratteli O., Jørgensen P.E.T. and Robinson D.W. (1999). Spectral asymptotics of periodic elliptic operators. Math. Z. 232(4): 621–650

    Article  MATH  MathSciNet  Google Scholar 

  3. Baake, M., Moody, R.V. (eds.): Directions in mathematical quasicrystals. In: CRM Monograph Series, vol. 13. American Mathematical Society, Providence (2000)

  4. Baake, M., Moody. R.V.: Self-similarities and invariant densities for model sets. In: Algebraic Methods in Physics (Montréal, QC, 1997). CRM Ser. Math. Phys., pp. 1–15. Springer, New York (2001)

  5. Cheded, L., Akhtar, S.: An exact FFT recovery theory: a nonsubtractive dither quantization approach with applications. EURASIP J. Appl. Signal Process., pages Art. ID 34838, 19 (2006)

    Google Scholar 

  6. Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

  7. Dutkay, D.E., Jorgensen, P.E.T.: Iterated function systems, Ruelle operators, and invariant projective measures. Math. Comp. 75(256), 1931–1970 (2006, electronic)

    Google Scholar 

  8. Dutkay D.E. and Jorgensen P.E.T. (2007). Analysis of orthogonality and of orbits in affine iterated function systems. Math. Z. 256(4): 801–823

    Article  MATH  MathSciNet  Google Scholar 

  9. Dutkay D.E. and Jorgensen P.E.T. (2007). Harmonic analysis and dynamics for affine iterated function systems. Houst. J. Math. 33(3): 877–905

    MATH  MathSciNet  Google Scholar 

  10. Farkas B., Matolcsi M. and Móra P. (2006). On Fuglede’s conjecture and the existence of universal spectra. J. Fourier Anal. Appl. 12(5): 483–494

    Article  MATH  MathSciNet  Google Scholar 

  11. Fuglede B. (1974). Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16: 101–121

    Article  MATH  MathSciNet  Google Scholar 

  12. Gröchenig K. and Madych W.R. (1992). Multiresolution analysis, Haar bases and self-similar tilings of R n. IEEE Trans. Inf. Theory 38(2, part 2): 556–568

    Article  Google Scholar 

  13. Hutchinson J.E. (1981). Fractals and self-similarity. Indiana Univ. Math. J. 30(5): 713–747

    Article  MATH  MathSciNet  Google Scholar 

  14. Iosevich A., Katz N.H. and Tao T. (2001). Convex bodies with a point of curvature do not have Fourier bases. Am. J. Math. 123(1): 115–120

    Article  MATH  MathSciNet  Google Scholar 

  15. Iosevich A., Katz N. and Tao T. (2003). The Fuglede spectral conjecture holds for convex planar domains. Math. Res. Lett. 10(5–6): 559–569

    MATH  MathSciNet  Google Scholar 

  16. Iosevich, A., Pedersen, S.: Spectral and tiling properties of the unit cube. Int. Math. Res. Notices (16):819–828 (1998)

  17. Jorgensen P.E.T. and Pedersen S. (1998). Dense analytic subspaces in fractal L 2-spaces. J. Anal. Math. 75: 185–228

    MathSciNet  Google Scholar 

  18. Jorgensen P.E.T. and Pedersen S. (1999). Spectral pairs in Cartesian coordinates. J. Fourier Anal. Appl. 5(4): 285–302

    Article  MATH  MathSciNet  Google Scholar 

  19. Kigami J. and Lapidus M.L. (2001). Self-similarity of volume measures for Laplacians on p.c.f. self-similar fractals. Commun. Math. Phys. 217(1): 165–180

    Article  MATH  MathSciNet  Google Scholar 

  20. Kolountzakis, M.N., Matolcsi, M.: Complex Hadamard matrices and the spectral set conjecture. Collect. Math. (Vol. Extra):281–291 (2006)

  21. Łaba, I.: Fuglede’s conjecture for a union of two intervals. Proc. Am. Math. Soc. 129(10), 2965–2972 (2001, electronic)

    Google Scholar 

  22. Łaba I. (2002). The spectral set conjecture and multiplicative properties of roots of polynomials. J. Lond. Math. Soc. (2) 65(3): 661–671

    Article  MATH  Google Scholar 

  23. Lawton W.M. (1991). Necessary and sufficient conditions for constructing orthonormal wavelet bases. J. Math. Phys. 32(1): 57–61

    Article  MATH  MathSciNet  Google Scholar 

  24. Long C.T. (1967). Addition theorems for sets of integers. Pac. J. Math. 23: 107–112

    MATH  Google Scholar 

  25. Lundy T. and Buskirk J. (2007). A new matrix approach to real FFTs and convolutions of length 2k. Computing 80(1): 23–45

    Article  MATH  MathSciNet  Google Scholar 

  26. Lagarias J.C. and Wang Y. (1996). Tiling the line with translates of one tile. Invent. Math. 124(1–3): 341–365

    Article  MATH  MathSciNet  Google Scholar 

  27. Łaba I. and Wang Y. (2002). On spectral Cantor measures. J. Funct. Anal. 193(2): 409–420

    Article  MATH  MathSciNet  Google Scholar 

  28. Łaba I. and Wang Y. (2006). Some properties of spectral measures. Appl. Comput. Harmon. Anal. 20(1): 149–157

    Article  MATH  MathSciNet  Google Scholar 

  29. Newman D.J. (1977). Tesselation of integers. J. Number Theory 9(1): 107–111

    Article  MATH  MathSciNet  Google Scholar 

  30. Pedersen, S.: The dual spectral set conjecture. Proc. Am. Math. Soc. 132(7), 2095–2101 (2004, electronic)

    Google Scholar 

  31. Pedersen, S.: On the dual spectral set conjecture. In: Current trends in operator theory and its applications. Oper. Theory Adv. Appl., vol. 149, pp. 487–491. Birkhäuser, Basel (2004)

  32. Powers R.T. (1976). Resistance inequalities for the isotropic Heisenberg ferromagnet. J. Math. Phys. 17(10): 1910–1918

    Article  MathSciNet  Google Scholar 

  33. Pedersen S. and Wang Y. (2001). Universal spectra, universal tiling sets and the spectral set conjecture. Math. Scand. 88(2): 246–256

    MATH  MathSciNet  Google Scholar 

  34. Strichartz R.S. (2006). Convergence of mock Fourier series. J. Anal. Math. 99: 333–353

    Article  MATH  MathSciNet  Google Scholar 

  35. Strichartz, R.S.: Differential equations on fractals. Princeton University Press, Princeton (2006, tutorial)

  36. Tao T. (2004). Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11(2–3): 251–258

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Ervin Dutkay.

Additional information

Research supported in part by a grant from the National Science Foundation DMS-0704191.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutkay, D.E., Jorgensen, P.E.T. Quasiperiodic spectra and orthogonality for iterated function system measures. Math. Z. 261, 373–397 (2009). https://doi.org/10.1007/s00209-008-0329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0329-2

Keywords

Mathematics Subject Classification (2000)

Navigation