Skip to main content
Log in

Gelfand–Zeitlin actions and rational maps

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We observe that the analogue of the Gelfand–Zeitlin action on \({{\mathfrak g \mathfrak l}(n,{\mathbb C})}\), which exists on any symplectic manifold M with an Hamiltonian action of \({GL(n,{\mathbb C})}\), has a natural interpretation as a residual action, after we identify M with a symplectic quotient of \({M\times \prod_{i=1}^n T^\ast GL(i,{\mathbb C})}\). We also show that the Gelfand–Zeitlin actions on \({T^\ast GL(n,{\mathbb C})}\) and on the regular part of \({{\mathfrak g \mathfrak l}(n,{\mathbb C})}\) can be identified with natural Hamiltonian actions on spaces of rational maps into full flag manifolds, while the Gelfand–Zeitlin action on the whole \({{\mathfrak g \mathfrak l}(n,{\mathbb C})}\) corresponds to a natural action on a space of rational maps into the manifold of half-full flags in \({{\mathbb C}^{2n}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F. and Hitchin N.J. (1988). The Geometry and Dynamics of Magnetic Monopoles. Princeton University Press, Princeton

    MATH  Google Scholar 

  2. Bielawski, R.: Monopoles and Rational Functions. Ph.D. Thesis, McGill University (1993)

  3. Bielawski R. (1997). Hyperkähler structures and group actions. J. Lond. Math. Soc. 55: 400–414

    Article  MathSciNet  Google Scholar 

  4. Bielawski R. (1998). Asymptotic metrics for SU(N)-monopoles with maximal symmetry breaking. Commun. Math. Phys. 199: 297–325

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyer C.P., Mann B.M., Hurtubise J.C. and Milgram R.J. (1994). The topology of the space of rational maps into generalized flag manifolds. Acta Math. 173: 61–101

    Article  MATH  MathSciNet  Google Scholar 

  6. Colarusso, M.: The Gelfand–Zeitlin Algebra and Polarizations of Regular Adjoint Orbits for Classical Groups. Ph.D. Thesis, UC San Diego (2007)

  7. Crawford T.A. (1993). Full holomorphic maps from the Riemann sphere to complex projective spaces. J. Differ. Geom. 38: 161–189

    MATH  MathSciNet  Google Scholar 

  8. Gelfand I.M. and Zeitlin M.L. (1950). Finite-dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR (N.S.) 71: 825–828

    MathSciNet  Google Scholar 

  9. Gerasimov A., Kharchev S. and Lebedev D. (2004). Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model. Int. Math. Res. Not. 17: 823–854

    Article  MathSciNet  Google Scholar 

  10. Gerasimov, A., Kharchev, S., Lebedev, D.: On a class of integrable systems connected with \({{\rm GL}(N,\mathbb R)}\)’. In: Proceedings of 6th International Workshop on Conformal Field Theory and Integrable Models. Internat. J. Modern Phys. A 19(suppl), 205–216 (2004)

    Google Scholar 

  11. Gerasimov A., Kharchev S., Lebedev D. and Oblezin S. (2005). On a class of representations of the Yangian and moduli spaces of monopoles. Commun. Math. Phys. 260: 511–525

    Article  MATH  MathSciNet  Google Scholar 

  12. Guillemin V. and Sternberg S. (1983). The Gelfand–Cetlin system and quantization of the complex flag manifolds. J. Funct. Anal. 52: 106–128

    Article  MATH  MathSciNet  Google Scholar 

  13. Gravesen J. (1989). On the topology of spaces of holomorphic maps. Acta Math. 162: 247–286

    Article  MATH  MathSciNet  Google Scholar 

  14. Hurtubise J.C. (1989). The classification of monopoles for the classical groups. Commun. Math. Phys. 120: 613–641

    Article  MATH  MathSciNet  Google Scholar 

  15. Kostant, B., Wallach, N.: Gelfand–Zeitlin theory from the perspective of classical mechanics. I’, In: Studies in Lie theory, pp. 319–364. Progr. Math., vol. 243. Birkhäuser, Boston (2006)

  16. Kostant, B., Wallach, N.: Gelfand–Zeitlin theory from the perspective of classical mechanics. II’, In: The unity of mathematics, pp. 387–420. Progr. Math., 244. Birkhäuser, Boston (2006)

  17. Kronheimer, P.B.: A hyperkähler structure on the cotangent bundle of a complex Lie group, math.DG/ 0409253

  18. Mann B.M. and Milgram R.J. (1993). On the moduli space of SU(n) monopoles and holomorphic maps to flag manifolds. J. Differ. Geom. 38: 39–103

    MATH  MathSciNet  Google Scholar 

  19. Murray M.K. (1989). Stratifying monopoles and rational maps. Commun. Math. Phys. 125: 661–674

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Bielawski.

Additional information

The research of the first author is supported by the Alexander von Humboldt Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielawski, R., Pidstrygach, V. Gelfand–Zeitlin actions and rational maps. Math. Z. 260, 779–803 (2008). https://doi.org/10.1007/s00209-008-0300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0300-2

Keywords

Navigation