Andruskiewitsch N. and Schneider H.J. (1998). Lifting of quantum linear spaces and pointed Hopf algebras of order p
3. J. Algebra 209: 658–691
MATH
Article
MathSciNet
Google Scholar
Andruskiewitsch, N., Schneider, H.J.: On the classification of finite-dimensional pointed Hopf algebras. Accepted for publication in Ann. Math., Preprint math.QA/0502157 (2005)
Borcherds R. (1988). Generalized Kac–Moody algebras. J. Algebra 115: 501–512
MATH
Article
MathSciNet
Google Scholar
Bourbaki N. (1968). Groupes et algèbres de Lie, Chap. 4, 5 et 6. Éléments de mathematique. Hermann, Paris
Google Scholar
Clifford, A., Preston, G.: The algebraic theory of semigroups, Mathematical surveys, vol. 7. Amer. Math. Soc., Providence, Rhode Island (1961)
Curtis C. and Reiner I. (1987). Methods of Representation Theory: with Applications to Finite Groups and Orders. Wiley, New York
MATH
Google Scholar
Dobrev V. and Petkova V. (1987). Group-theoretical approach to extended conformal supersymmetry: function space realizations and invariant differential operators. Fortschr. d. Physik 35: 537–572
Article
MathSciNet
Google Scholar
Drinfel’d, V.: Quantum groups. In: Proceedings ICM 1986, pp 798–820. Amer. Math. Soc., Providence (1987)
Heckenberger, I.: Rank 2 Nichols algebras with finite arithmetic root system. Accepted for publication in Algebras and Representation Theory, Preprint math.QA/0412458 (2004)
Heckenberger, I.: Classification of arithmetic root systems of rank 3. Accepted for publication in Proceedings of XVI Cla, Preprint Math.QA/0509145 (2005)
Heckenberger, I.: Classification of arithmetic root systems. Preprint Math.QA/0605795 (2006)
Heckenberger I. (2006). The Weyl groupoid of a Nichols algebra of diagonal type. Invent. Math. 164: 175–188
MATH
Article
MathSciNet
Google Scholar
Heckenberger, I., Kolb, S.: On the Bernstein-Gelfand–Gelfand resolution for Kac–Moody algebras and quantized enveloping algebras. Accepted for publication in Transformation Groups, Preprint math. QA/0605460 (2006)
Humphreys J. (1972). Introduction to Lie Algebras and Representation Theory. Springer, Heidelberg
MATH
Google Scholar
Jimbo M. (1986). A q-analog of \(\mathcal{U}(gl({N}+1))\), Hecke algebra, and the Yang–Baxter equation. Lett. Math. Phys. 11: 247–252
MATH
Article
MathSciNet
Google Scholar
Kac V. (1977). Lie superalgebras. Adv. Math. 26: 8–96
MATH
Article
Google Scholar
Kac V. (1990). Infinite Dimensional Lie Algebras. Cambridge University Press, Cambridge
MATH
Google Scholar
Kharchenko V. (1999). A quantum analogue of the Poincaré–Birkhoff–Witt theorem. Algebra Logic 38(4): 259–276
Article
MathSciNet
Google Scholar
Kumar S. (2002). Kac–Moody groups, their flag vareties and representation theory. Birkhäuser, Basel
Google Scholar
Loos, O., Neher, E.: Reflection systems and partial root systems. Preprint (2005)
Matsumoto H. (1964). Générateurs et relations des groupes de Weyl généralisés. C. R. Acad. Sci. Paris 258: 3419–3422
MATH
MathSciNet
Google Scholar
Serganova V. (1996). On generalizations of root systems. Commun. Algebra 24: 4281–4299
MATH
Article
MathSciNet
Google Scholar
Yamane H. (1999). On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras. Publ. RIMS Kyoto Univ. 35(3): 321–390
MATH
MathSciNet
Article
Google Scholar
Yamane H. (2001). Errata to “On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras”. Publ. RIMS Kyoto Univ. 37(4): 615–619
MathSciNet
Google Scholar