Skip to main content
Log in

Analogues of Cayley graphs for topological groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We define for a compactly generated totally disconnected locally compact group a graph, called a rough Cayley graph, that is a quasi-isometry invariant of the group. This graph carries information about the group structure in an analogous way to the ordinary Cayley graph for a finitely generated group. With this construction the machinery of geometric group theory can be applied to topological groups. This is illustrated by a study of groups where the rough Cayley graph has more than one end and a study of groups where the rough Cayley graph has polynomial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H. (1974). Specker-Kompactifizierungen von lokal kompakten topologischen Gruppen. Math. Z. 135: 325–361

    Article  MATH  MathSciNet  Google Scholar 

  2. Bass H. and Kulkarni R. (1990). Uniform tree lattices. J. Am. Math. Soc. 3: 843–902

    Article  MATH  MathSciNet  Google Scholar 

  3. Bowditch B.H. (2002). Groups acting on Cantor sets and the end structure of graphs. Pac. J. Math. 207: 31–60

    Article  MATH  MathSciNet  Google Scholar 

  4. Bowditch B.H. (2002). Splittings of finitely generated groups over two-ended subgroups. Trans. Am. Math. Soc. 354: 1049–1078

    Article  MATH  MathSciNet  Google Scholar 

  5. Dantzig D. (1936). Zur topologischen Algebra III. Brouwersche und Cantorsche Gruppen. Compos. Math. 3: 408–426

    MATH  Google Scholar 

  6. Dicks W. and Dunwoody M.J. (1989). Groups Acting on Graphs. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  7. Diestel R. and Leader I. (2001). A conjecture concerning a limit of non-Cayley graphs. J. Algebraic Comb. 14: 17–25

    Article  MATH  MathSciNet  Google Scholar 

  8. Dunwoody M.J. (1979). Accessibility and groups of cohomological dimension one. Proc. Lond. Math. Soc. 38(3): 193–215

    Article  MATH  MathSciNet  Google Scholar 

  9. Dunwoody M.J. (1985). The accessibility of finitely presented groups. Invent. Math. 81: 449–457

    Article  MATH  MathSciNet  Google Scholar 

  10. Dunwoody, M.J.: An inaccessible group. In: Niblo, G.A., Roller, M.A. (eds.) The Proceedings of Geometric Group Theory 1991. L.M.S. Lecture Notes Series, vol. 181, pp. 75–78. Cambridge University Press, Cambridge (1993)

  11. Dunwoody M.J. and Roller M.A. (1993). Splitting groups over polycyclic-by-finite subgroups. Bull. Lond. Math. Soc. 25: 29–36

    Article  MATH  MathSciNet  Google Scholar 

  12. Freudenthal, H.: Über die Enden topologischer Räume und Gruppen. Dissertation Berlin (Available from http://www.mathematik.uni-bielefeld.) (1931)

  13. Freudenthal H. (1932). Über die Enden topologischer Räume und Gruppen. Math. Z. 33: 692–713

    Article  MathSciNet  Google Scholar 

  14. Freudenthal H. (1945). Über die Enden diskreter Räume und Gruppen. Comment. Math. Helv. 17: 1–38

    Article  MATH  MathSciNet  Google Scholar 

  15. Gehring F.W. and Martin G.J. (1987). Discrete quasiconformal groups I. Proc. Lond. Math. Soc. 55(3): 331–358

    MATH  MathSciNet  Google Scholar 

  16. Gromov M. (1981). Groups of polynomial growth and expanding maps. Publ. Math. IHES 53: 53–78

    MATH  MathSciNet  Google Scholar 

  17. Gromov, M.: Infinite groups as geometric objects. In: Proceedings of the International Congress of Mathematicians, vol. 1, pp. 385–392. PWN, Warsaw (1984)

  18. Halin R. (1964). Über unendliche Wege in Graphen. Math. Ann. 157: 125–137

    Article  MATH  MathSciNet  Google Scholar 

  19. Halin R. (1965). Über die Maximalzahl fremder unendlicher Wege in Graphen. Math. Nachr. 30: 119–127

    Article  MathSciNet  Google Scholar 

  20. Halin R. (1973). Automorphisms and endomorphisms of infinite locally finite graphs. Abh. Math. Sem. Univ. Hamb. 39: 251–283

    MATH  MathSciNet  Google Scholar 

  21. Hewitt E. and Ross K.A. (1963). Abstract Harmonic Analysis, vol. 1. Springer, Berlin

    Google Scholar 

  22. Hopf H. (1944). Enden offener Räume und unendliche diskontinuierlich Gruppen. Comment. Math. Helv. 16: 81–100

    Article  MATH  MathSciNet  Google Scholar 

  23. Houghton C.H. (1974). Ends of locally compact groups and their coset spaces. J. Aust. Math. Soc. 17: 274–284

    MATH  MathSciNet  Google Scholar 

  24. Jung H.A. (1981). A note on fragments of infinite graphs. Combinatorica 1: 285–288

    Article  MATH  MathSciNet  Google Scholar 

  25. Jung H.A. (1994). On finite fixed sets in infinite graphs. Discret. Math. 131: 115–125

    Article  MATH  Google Scholar 

  26. Jung H.A. and Watkins M.E. (1984). Fragments and automorphisms of infinite graphs. Eur. J. Comb. 5: 149–162

    MATH  MathSciNet  Google Scholar 

  27. Krön B. (2001). End compactifications in non-locally-finite graphs. Math. Proc. Camb. Phil. Soc. 131: 427–443

    MATH  Google Scholar 

  28. Krön B. (2001). Quasi-isometries between non-locally-finite graphs and structure trees. Abh. Math. Sem. Univ. Hamb. 71: 161–180

    Article  MATH  Google Scholar 

  29. Krön, B., Möller, R.G.: Metric ends, fibers and automorphisms of graphs. Math. Nach. (To appear)

  30. Krön, B., Möller, R.G.: Quasi-isometries between graphs and trees. (2005) (Preprint)

  31. Krön, B., Möller, R.G.: Free groups and ends of graphs. (2005) (Preprint)

  32. Kropholler P.H. and Roller M.A. (1989). Relative ends and duality groups. J. Pure Appl. Algebra 61: 197–210

    Article  MATH  MathSciNet  Google Scholar 

  33. Losert V. (1987). On the structure of groups with polynomial growth. Math. Z. 195: 109–117

    Article  MATH  MathSciNet  Google Scholar 

  34. Losert V. (2001). On the structure of groups with polynomial growth. II. J. Lond. Math. Soc. 63(2): 640–654

    Article  MATH  MathSciNet  Google Scholar 

  35. Möller R.G. (1992). Ends of graphs. Math. Proc. Camb. Phil. Soc. 111: 255–266

    MATH  Google Scholar 

  36. Möller R.G. (1992). Ends of graphs II. Math. Proc. Camb. Phil. Soc. 111: 455–460

    MATH  Google Scholar 

  37. Möller, R.G.: Groups acting on locally finite graphs, a survey of the infinitely ended case. In: Campbell, C.M., Hurley, T.C., Robertson, E.F., Tobin, S.J., Ward, J.J. (eds.) Groups’93 Galway/St Andrews, vol. 2. L.M.S. Lecture Notes Series, vol. 212, pp. 426–456. Cambridge University Press, Cambridge (1995)

  38. Möller R.G. (1996). Accessibility and ends of graphs. J. Combin. Theory Ser. B 66: 303–309

    Article  MATH  MathSciNet  Google Scholar 

  39. Möller R.G. (2002). Structure theory of totally disconnected locally compact groups via graphs and permutations. Can. J. Math. 54: 795–827

    MATH  Google Scholar 

  40. Möller R.G. (2003). FC-elements in totally disconnected groups and automorphisms of infinite graphs. Math. Scand. 92: 261–268

    MATH  MathSciNet  Google Scholar 

  41. Möller R.G. and Seifter N. (1998). Digraphical regular representations of infinite finitely generated groups. Eur. J. Combin. 19: 597–602

    Article  MATH  Google Scholar 

  42. Morris S.A. and Nicholas P. (1976). Locally compact topologies on an algebraic free product of groups. J. Algebra 38: 393–397

    Article  MATH  MathSciNet  Google Scholar 

  43. Mosher L., Sageev M. and Whyte K. (2003). Quasi-actions on trees. I. Bounded valence. Ann. Math. 158(2): 115–164

    MATH  MathSciNet  Google Scholar 

  44. Nebbia C. (2000). Minimally almost periodic totally disconnected groups. Proc. Am. Math. Soc. 128: 347–351

    Article  MATH  MathSciNet  Google Scholar 

  45. Niblo G.A. (2002). The singularity obstruction for group splittings. Topol. Appl. 119: 17–31

    Article  MATH  MathSciNet  Google Scholar 

  46. Papasoglu P. and Whyte K. (2002). Quasi-isometries between groups with infinitely many ends. Comment. Math. Helv. 77: 133–144

    Article  MATH  MathSciNet  Google Scholar 

  47. Pavone M. (1997). Bilateral denseness of the hyperbolic limit points of groups acting on metric spaces. Abh. Math. Sem. Univ. Hamb. 67: 123–135

    MATH  MathSciNet  Google Scholar 

  48. Pavone M. (1998). On the hyperbolic limit points of groups acting on hyperbolic spaces. Rend. Circ. Mat. Palermo 47(2): 49–70

    Article  MATH  MathSciNet  Google Scholar 

  49. Sabidussi G. (1964). Vertex-transitive graphs. Monatsh. Math. 68: 426–438

    Article  MATH  MathSciNet  Google Scholar 

  50. Scott G.P. (1977). Ends of pairs of groups. J. Pure Appl. Algebra 11: 179–198

    Article  MathSciNet  Google Scholar 

  51. Scott G.P. and Swarup G.A. (2000). Splittings of groups and intersection numbers. Geom. Topol. 4: 179–218

    Article  MATH  MathSciNet  Google Scholar 

  52. Serre J.-P. (1980). Trees. Springer, Heidelberg

    MATH  Google Scholar 

  53. Soardi P. and Woess W. (1990). Amenability, unimodularity and the spectral radius of random walks on infinite graphs. Math. Z. 205: 471–486

    Article  MATH  MathSciNet  Google Scholar 

  54. Stallings J.R. (1968). On torsion free groups with infinitely many ends. Ann. Math. 88: 312–334

    Article  MathSciNet  Google Scholar 

  55. Thomassen C. and Woess W. (1993). Vertex–transitive graphs and accessibility. J. Combin. Theory Ser. B 58: 248–268

    Article  MATH  MathSciNet  Google Scholar 

  56. Tits, J.: Sur le groupe des automorphismes d’un arbre. In: Essays on topology and related topics. (Mémoires dédiés a G.de Rham), 188–211. Springer, Heidelberg (1970)

  57. Trofimov V.I. (1985). Graphs with polynomial growth. Math USSR Sb. 51: 405–417

    Article  MATH  Google Scholar 

  58. Wall C.T.C. (1967). Poincaré complexes I. Ann. Math. 86(2): 213–245

    Article  MathSciNet  Google Scholar 

  59. Wall C.T.C. (2003). The geometry of abstract groups and their splittings. Rev. Mat. Complut. 16: 5–10

    MATH  MathSciNet  Google Scholar 

  60. Woess W. (1989). Graphs and groups with tree-like properties. J. Combin. Theory Ser. B 47: 361–371

    Article  MATH  MathSciNet  Google Scholar 

  61. Woess W. (1989). Boundaries of random walks on graphs and groups with infinitely many ends. Isr. J. Math. 68: 271–301

    Article  MATH  MathSciNet  Google Scholar 

  62. Woess, W.: Topological groups and infinite graphs. In: Diestel, R. (ed.) Directions in Infinite Graph Theory and Combinatorics: Topics in Discrete Math, vol. 3, North Holland, Amsterdam 1992. Also in Discrete Math. 95, 373–384 (1991)

  63. Wolf J.A. (1968). Growth of finitely generated solvable groups and curvature of Riemannian manifolds. J. Differ. Geom. 2: 421–446

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rögnvaldur G. Möller.

Additional information

Supported by project J2245 of the Austrian Science Fund (FWF) and be an IEF Marie Curie Fellowship of the Commission of the European Union.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krön, B., Möller, R.G. Analogues of Cayley graphs for topological groups. Math. Z. 258, 637–675 (2008). https://doi.org/10.1007/s00209-007-0190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0190-8

Mathematics Subject Classification (2000)

Navigation