Skip to main content
Log in

On Donaldson’s flow of surfaces in a hyperkähler four-manifold

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove some basic properties of Donaldson’s flow of surfaces in a hyperkähler 4-manifold. When the initial submanifold is symplectic with respect to one Kähler form and Lagrangian with respect to another, we show that certain kinds of singularities cannot form, and we prove a convergence result under a condition related to one considered by M.-T. Wang for the mean curvature flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen J. and Li J. (2001). Mean curvature flow of surface in 4-manifolds. Adv. Math. 163(2): 287–309

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen J. and Li J. (2004). Singularity of mean curvature flow of Lagrangian submanifolds. Invent. Math. 156(1): 25–51

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen J., Li J. and Tian G. (2002). Two-dimensional graphs moving by mean curvature flow. Acta Math. Sin. 18(2): 209–224

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen X.X. (2004). A new parabolic flow in Kähler manifolds. Commun. Anal. Geom. 12(4): 837–852

    MATH  Google Scholar 

  5. Donaldson S.K. (1999). Moment maps and diffeomorphisms. Asian J. Math. 3(1): 1–16

    MATH  MathSciNet  Google Scholar 

  6. Huisken G. (1986). Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. Math. 84: 463–480

    Article  MATH  MathSciNet  Google Scholar 

  7. Huisken G. (1990). Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1): 285–299

    MATH  MathSciNet  Google Scholar 

  8. Langer J. (1985). A compactness theorem for surfaces with L p -bounded second fundamental form, Math. Ann. 270: 223–234

    MATH  Google Scholar 

  9. Micallef M.J. and Wolfson J. (1993). The second variation of minimal surfaces in 4-manifolds. Math. Ann. 295: 245–267

    Article  MATH  MathSciNet  Google Scholar 

  10. Neves, A.: Singularities of Lagrangian mean curvature flow (preprint)

  11. Smoczyk, K.: A canonical way to deform a Lagrangian submanifold, dg-ga/9605005 (preprint)

  12. Smoczyk K. (2002). Angle theorems for the Lagrangian mean curvature flow. Math. Z. 240: 849–883

    Article  MATH  MathSciNet  Google Scholar 

  13. Smoczyk K. (2004). Longtime existence of the Lagrangian mean curvature flow. Calc. Var. Partial Differ. Eq. 20(1): 25–46

    Article  MATH  MathSciNet  Google Scholar 

  14. Smoczyk K. and Wang M.-T. (2002). Mean curvature flows of Lagrangian submanifolds with convex potentials. J. Differ. Geom. 62(2): 243–257

    MATH  MathSciNet  Google Scholar 

  15. Song, J., Weinkove, B.: On the convergence and singularities of the J-flow with applications to the Mabuchi energy, math.DG/0410418 (preprint)

  16. Strominger A., Yau S.-T. and Zaslow F. (1996). Mirror symmetry is T-duality. Nucl. Phys. B 479: 243–259

    Article  MATH  MathSciNet  Google Scholar 

  17. Thomas R.P. and Yau S.-T. (2002). Special Lagrangians, stable bundles and mean curvature flow. Comm. Anal. Geom. 10(5): 1075–1113

    MATH  MathSciNet  Google Scholar 

  18. Tsui M.-P. and Wang M.-T. (2004). Mean curvature flows and isotopy of maps between spheres. Comm. Pure Appl. Math. 57(8): 1110–1126

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang M.-T. (2001). Mean curvature flow of surfaces in Einstein four-manifolds. J. Differ. Geom. 57: 301–338

    MATH  Google Scholar 

  20. Wang M.-T. (2001). Deforming area preserving diffeomorphism of surfaces by mean curvature flow, Math. Res. Lett. 8(5–6): 651–661

    MATH  Google Scholar 

  21. Wang, M.-T.: A convergence result of the Lagrangian mean curvature flow, math.DG/0508354 (preprint)

  22. Weinkove B. (2006). On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy. J. Diff. Geom. 73(2): 351–358

    MATH  MathSciNet  Google Scholar 

  23. Zhu, X.-P.: Lectures on Mean Curvature Flows. In: Yau, S.T. (ed.) AMS/IP Studies in Advanced Mathematics (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Song.

Additional information

The second author is supported in part by National Science Foundation grant DMS-05-04285, and is currently on leave from Harvard University, supported by a Royal Society Research Assistantship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Weinkove, B. On Donaldson’s flow of surfaces in a hyperkähler four-manifold. Math. Z. 256, 769–787 (2007). https://doi.org/10.1007/s00209-007-0102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0102-y

Keywords

Navigation