Skip to main content
Log in

Potential theory of truncated stable processes

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For any \(\alpha \in (0, 2)\), a truncated symmetric α-stable process is a symmetric Lévy process in \(\mathbb{R}^{d}\) with a Lévy density given by \(c|x|^{-d-\alpha} 1_{\{|x| < 1\}}\) for some constant c. In this paper we study the potential theory of truncated symmetric stable processes in detail. We prove a Harnack inequality for nonnegative harmonic functions of these processes. We also establish a boundary Harnack principle for nonnegative functions which are harmonic with respect to these processes in bounded convex domains. We give an example of a non-convex domain for which the boundary Harnack principle fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass R.F., Levin D.A. (2002) Harnack inequalities for jump processes. Potential Anal. 17: 375–388

    Article  MATH  MathSciNet  Google Scholar 

  2. Bass R.F., Burdzy K. (1991) A boundary Harnack principle in twisted Hölder domains. Ann. Math. 134(2):253–276

    Article  MathSciNet  Google Scholar 

  3. Bass, R.F., Burdzy, K.: A probabilistic proof of the boundary Harnack principle. In: Seminar on Stochastic Processes, 1989, pp. 1–16, Birkhäuser, Boston (1990)

  4. Bogdan K. (1997) The boundary Harnack principle for the fractional Laplacian. Stud. Math. 123(1):43–80

    MATH  MathSciNet  Google Scholar 

  5. Bogdan K. (1999) Representation of α-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29:227–243

    MATH  MathSciNet  Google Scholar 

  6. Bogdan K., Burdzy K., Chen Z.-Q. (2003) Censored stable processes. Probab. Theory Relat. Fields 127(1):89–152

    Article  MATH  MathSciNet  Google Scholar 

  7. Bogdan K., Byczkowski T. (1999) Probabilistic proof of boundary Harnack principle for α-harmonic functions. Potential Anal. 11(2):135–156

    Article  MATH  MathSciNet  Google Scholar 

  8. Bogdan K., Stos A., Sztonyk P. (2002) Potential theory for Lévy stable processes. Bull. Polish Acad. Sci. Math. 50:361–372

    MATH  MathSciNet  Google Scholar 

  9. Chen Z.-Q. (1999) Multidimensional symmetric stable processes. Korean J. Comput. Appl. Math. 6(2):227–266

    MATH  MathSciNet  Google Scholar 

  10. Chen Z.-Q., Kumagai T. (2003) Heat kernel estimates for stable-like processes on d-sets. Stoch. Proc. Appl. 108:27–62

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen Z.-Q., Kim P. (2002) Green function estimate for censored stable processes. Probab. Theory Relat. Fields 124(4):595–610

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen Z.-Q., Kim P. (2004) Stability of Martin boundary under non-local Feynman–Kac perturbations. Probab. Theory Relat. Fields 128:525–564

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen Z.-Q., Song R. (1998) Estimates on Green functions and Poisson kernels of symmetric stable processes. Math. Ann. 312:465–601

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen Z.-Q., Song R. (1998) Martin boundary and integral representation for harmonic functions of symmetric stable processes. J. Funct. Anal. 159:267–294

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen Z.-Q., Song R. (2002) General gauge and conditional gauge theorems. Ann. Probab. 30:1313–1339

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen Z.-Q., Song R. (2003) Drift transforms and Green function estimates for discontinuous processes. J. Funct. Anal. 201:262–281

    Article  MATH  MathSciNet  Google Scholar 

  17. Chung K.L., Zhao Z. (1995) From Brownian Motion to Schrödinger’s Equation. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  18. Fukushima M., Oshima Y., Takeda M. (1994) Dirichlet Forms and Symmetric Markov Processes. Walter De Gruyter, Berlin

    MATH  Google Scholar 

  19. Ikeda N., Watanabe S. (1962) On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2:79–95

    MATH  MathSciNet  Google Scholar 

  20. Jerison D.S., Kenig C.E. (1982) Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 46:80–147

    Article  MATH  MathSciNet  Google Scholar 

  21. Kim P. (2003) Fatou’s theorem for censored stable processes. Stochast. Process. Appl. 108(1):63–92

    Article  MATH  Google Scholar 

  22. Kulczycki T. (1997) Properties of Green function of symmetric stable processes. Probab. Math. Stat. 17:381–406

    MathSciNet  Google Scholar 

  23. Kunita H., Watanabe T. (1965) Markov processes and Martin boundaries. Illinois J. Math. 9:485–526

    MATH  MathSciNet  Google Scholar 

  24. Martio O., Vuorinen M. (1987) Whitney cubes, p-capacity, and Minkowski content. Exposition. Math. 5(1):17–40

    MATH  MathSciNet  Google Scholar 

  25. Ryznar M. (2002) Estimates of Green function for relativistic α-stable process. Potential Anal. 17:1–23

    Article  MATH  MathSciNet  Google Scholar 

  26. Sato K.-I. (1999) Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  27. Skorohod A.V. (1991) Random Processes with Independent Increments. Kluwer, Dordrecht

    MATH  Google Scholar 

  28. Song R., Vondraček Z. (2004) Harnack inequalities for some classes of Markov processes. Math. Z. 246:177–202

    Article  MATH  MathSciNet  Google Scholar 

  29. Song R., Wu J. (1999) Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168(2): 403–427

    Article  MATH  MathSciNet  Google Scholar 

  30. Sztonyk P. (2000) On harmonic measure for Lévy processes. Probab. Math. Stat. 20:383–390

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renming Song.

Additional information

The research of Panki Kim is supported by Research Settlement Fund for the new faculty of Seoul National University. The research of Renming Song is supported in part by a joint US-Croatia grant INT 0302167.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, P., Song, R. Potential theory of truncated stable processes. Math. Z. 256, 139–173 (2007). https://doi.org/10.1007/s00209-006-0063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-006-0063-6

Keywords

Mathematics Subject Classification (2000)

Navigation