Skip to main content
Log in

Multi-peak solutions for the Hénon equation with slightly subcritical growth

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the Dirichlet problem for the Hénon equation

$$ \left\{ \begin{array}{ll} -\Delta u=|x|^\alpha u^{\frac{N+2}{N-2}-\varepsilon} &\hbox{in } \Omega,\\ u > 0 &\hbox{in } \Omega,\\ u=0 &\hbox{on } \partial\Omega,\\ \end{array}\right. $$

where Ω is the unit ball in \(\mathbb{R}^N\), with N ≥ 3, the power α is positive and \(\varepsilon\) is a small positive parameter. We prove that for every integer k ≥ 1 the above problem has a solution which blows up at k different points of ∂Ω as \(\varepsilon\) goes to zero. We also show that the ground state solution (which blows up at one point) is unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahri, A.: Critical points at infinity in some variational problems. Pitman Res. Notes in Math. Series, vol. 182. Longman (1989)

  2. Bahri A. and Coron J.M. (1988). On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Comm. Pure Appl. Math. 41: 255–294

    MathSciNet  Google Scholar 

  3. Badiale M. and Serra E. (2004). Multiplicity results for the supercitical Hénon equation. Adv. Nonlinear Stud. 4(4): 453–467

    MATH  MathSciNet  Google Scholar 

  4. Bahri A., Li Y. and Rey O. (1995). On a variational problem with lack of compactness: the topological effect of the critical points at infinity. Calc. Var. PDEs. 3(1): 67–93

    Article  MATH  MathSciNet  Google Scholar 

  5. Bianchi G. and Egnell H. (1991). A note on the Sobolev inequality. J. Funct. Anal. 100(1): 18–24

    Article  MATH  MathSciNet  Google Scholar 

  6. Cao D. and Peng S. (2003). The asymptotic behaviour of the ground state solutions for Hénon equation. J. Math. Anal. Appl. 278(1): 1–17

    Article  MATH  MathSciNet  Google Scholar 

  7. del Pino M., Felmer P. and Musso M. (2003). Two-bubble solutions in the super-critical Bahri-Coron’s problem. Calc. Var. Partial Differ. Equ. 16(2): 113–145

    Article  MATH  MathSciNet  Google Scholar 

  8. del Pino M., Felmer P. and Musso M. (2003). Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries. Bull. London Math. Soc. 35(4): 513–521

    Article  MATH  MathSciNet  Google Scholar 

  9. Gidas B., Ni W.N. and Nirenberg L. (1979). Symmetries and related properties via the maximum principle. Comm. Math. Phys. 68: 209–243

    Article  MATH  MathSciNet  Google Scholar 

  10. Glangetas L. (1993). Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent. Nonlinear Anal. 20(5): 571–603

    Article  MATH  MathSciNet  Google Scholar 

  11. Hénon M. (1973). Numerical experiments on the stability oh spherical stellar systems. Astron. Astrophys. 24: 229–238

    Google Scholar 

  12. Hofer H. (1984). A note on the topological degree at a critical point of mountainpass-type. Proc. Am. Math. Soc. 90(2): 309–315

    Article  MATH  MathSciNet  Google Scholar 

  13. Khenissy S. and Rey O. (2004). A criterion for the existence of solutions to the supercritical Bahri–Coron problem. Houston J. Math. 30(2): 587–613

    MATH  MathSciNet  Google Scholar 

  14. Musso M. and Pistoia A. (2002). Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent. Indiana Univ. Math. J. 51(3): 541–579

    Article  MATH  MathSciNet  Google Scholar 

  15. Ni W.N. (1982). A nonlinear Dirichlet problem on the unit ball and its applications.. Indiana Univ. Math. J. 31(6): 801–807

    Article  MATH  MathSciNet  Google Scholar 

  16. Pacella F. (2002). Symmetry results for solutions of semilinear elliptic equations with convex nonlinearities. J. Funct. Anal. 192(1): 271–282

    Article  MATH  MathSciNet  Google Scholar 

  17. Peng S. (2006). Multiple boundary concentrating solutions to Dirichlet Problem of Hénon equation. Acta Math. Appl. Sinica 22(1): 137–162

    Article  MATH  Google Scholar 

  18. Rey O. (1990). The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89(1): 1–52

    Article  MATH  MathSciNet  Google Scholar 

  19. Serra E. (2005). Non radial positive solutions for the Hénon equation with critical growth. Calc. Var. PDEs. 23(3): 301–326

    Article  MATH  MathSciNet  Google Scholar 

  20. Smets D., Willem M. and Su J. (2002). Non-radial ground states for the Hénon equation.. Commun. Contemp. Math. 4(3): 467–480

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Serra.

Additional information

The first author is supported by the M.I.U.R. National Project “Metodi variazionali e topologici nello studio di fenomeni non lineari” . The second author is supported by the M.I.U.R. National Project “Metodi variazionali ed equazioni differenziali nonlineari”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pistoia, A., Serra, E. Multi-peak solutions for the Hénon equation with slightly subcritical growth. Math. Z. 256, 75–97 (2007). https://doi.org/10.1007/s00209-006-0060-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-006-0060-9

Keywords

Mathematics Subject Classification (2000)

Navigation