Skip to main content
Log in

Cohomological characterization of pseudoconvexity in a Banach space

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract.

Let X be a Banach space with a countable unconditional basis (e.g., X=ℓ2), Ω⊂X open. We show that Ω is pseudoconvex if and only if for each affine complex line L in X the sheaf cohomology group H 1(Ω,I) vanishes, where I is the ideal sheaf of all holomorphic functions on Ω that vanish on Ω∩L. We also give an example that the condition H q(Ω,𝒪)=0 for all q≥1 unlike in finite dimensions does not imply the pseudoconvexity of Ω . Lastly, we prove an interpolation result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cartan, H.: Sur le premier problème de Cousin. C. R. Acad. Sci. Paris 207, 558–560 (1938)

    MATH  Google Scholar 

  2. Dineen, S.: Bounding subsets of a Banach space. Math. Ann. 192, 61–70 (1971)

    MATH  Google Scholar 

  3. Frenkel, J.: Cohomologie non abélienne et espaces fibrés. Bull. Soc. Math. France 85, 135–220 (1957)

    MATH  Google Scholar 

  4. Gunning, R.C.: Introduction to holomorphic functions of several variables. Vol. III, Wadsworth & Brooks/Cole, Belmont, California, 1990

  5. Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd Ed. Amsterdam: North-Holland, 1990

  6. Josefson, B.: Bounding subsets of ℓ(A). J. Math. Pures Appl. (9) 57(4), 397–421 (1978)

    Google Scholar 

  7. Kajiwara, J., Fukushima, Y., Li, L., Li, X.D.: Characterizations of holomorphy of domains through validity of Theorem A, B or Oka’s principle. Lecture Notes in Pure and Appl. Math. 214, 179–199. New York: Dekker, 2000

    Google Scholar 

  8. Leiterer, J.: Banach coherent analytic Fréchet sheaves. Math. Nachr. 85, 91–109 (1978)

    MathSciNet  MATH  Google Scholar 

  9. Lempert, L.: The Dolbeault complex in infinite dimensions I. J. Am. Math. Soc. 11, 485–520 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Lempert, L.: The Dolbeault complex in infinite dimensions II. J. Am. Math. Soc. 12, 775–793 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Lempert, L.: The Dolbeault complex in infinite dimensions III. Invent. Math. 142, 579–603 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Lempert, L.: Approximation de fonctions holomorphes d’un nombre infini de variables. Ann. Inst. Fourier (Grenoble) 49, 1293–1304 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Lempert, L.: Approximation of holomorphic functions of infinitely many variables II. Ann. Inst. Fourier (Grenoble) 50, 423–442 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Lempert, L.: Analytic cohomology in Fréchet spaces. Communications in Analysis and Geometry. To appear

  15. Noverraz, P.: Pseudo-convexité, convexité polynomiale et domains d’holomorphie en dimension infinie. Amsterdam: North-Holland, 1973

  16. Patyi, I.: Analytic cohomology vanishing in infinite dimensions. Ph.D. Thesis, Purdue University, 2000

  17. Patyi, I.: On a splitting problem. Bull. Sci. Math. 126, 631–636 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Patyi.

Additional information

Mathematics Subject Classification (2002): 32T05, 46G20.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patyi, I. Cohomological characterization of pseudoconvexity in a Banach space. Math. Z. 245, 371–386 (2003). https://doi.org/10.1007/s00209-003-0550-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-003-0550-y

Keywords

Navigation