Abstract
A geometric framework relating valuations on convex bodies to valuations on convex functions is introduced. It is shown that a classical result by McMullen can be used to obtain a characterization of continuous, epi-translation invariant, and n-epi-homogeneous valuations on convex functions, which was previously established by Colesanti, Ludwig, and Mussnig. Following an approach by Goodey and Weil, a new characterization of 1-epi-homogeneous valuations is obtained.
Similar content being viewed by others
Data availability
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References
Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139003858.005
Alesker, S.: Continuous rotation invariant valuations on convex sets. Ann. Math. (2) 149(3), 977–1005 (1999). https://doi.org/10.2307/121078
Alesker, S.: Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Funct. Anal. 11(2), 244–272 (2001). https://doi.org/10.1007/PL00001675
Bernig, A., Fu, J.H.G.: Hermitian integral geometry. Ann. Math. (2) 173(2), 907–945 (2011). https://doi.org/10.4007/annals.2011.173.2.7
Bernig, A., Fu, J.H.G., Solanes, G.: Integral geometry of complex space forms. Geom. Funct. Anal. 24(2), 403–492 (2014). https://doi.org/10.1007/s00039-014-0251-1
Haberl, C.: Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. (JEMS) 14(5), 1565–1597 (2012). https://doi.org/10.4171/JEMS/341
Haberl, C., Parapatits, L.: The centro-affine Hadwiger theorem. J. Am. Math. Soc. 27(3), 685–705 (2014). https://doi.org/10.1090/S0894-0347-2014-00781-5
Haberl, C., Parapatits, L.: Moments and valuations. Am. J. Math. 138(6), 1575–1603 (2016). https://doi.org/10.1353/ajm.2016.0047
Ludwig, M., Reitzner, M.: A classification of \({\rm SL}(n)\) invariant valuations. Ann. Math. (2) 172(2), 1219–1267 (2010). https://doi.org/10.4007/annals.2010.172.1223
Colesanti, A., Lombardi, N.: Valuations on the space of quasi-concave functions. In: Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 2169, pp. 71–105. Springer, Cham (2017)
Colesanti, A., Lombardi, N., Parapatits, L.: Translation invariant valuations on quasi-concave functions. Stud. Math. 243(1), 79–99 (2018). https://doi.org/10.4064/sm170323-7-7
Mussnig, F.: Valuations on log-concave functions. J. Geom. Anal. 31(6), 6427–6451 (2021). https://doi.org/10.1007/s12220-020-00539-3
Kone, H.: Valuations on Orlicz spaces and \(L^\phi \)-star sets. Adv. Appl. Math. 52, 82–98 (2014). https://doi.org/10.1016/j.aam.2013.07.004
Li, J., Ma, D.: Laplace transforms and valuations. J. Funct. Anal. 272(2), 738–758 (2017). https://doi.org/10.1016/j.jfa.2016.09.011
Tsang, A.: Valuations on \(L^p\)-spaces. Int. Math. Res. Not. IMRN 20, 3993–4023 (2010). https://doi.org/10.1090/S0002-9947-2012-05681-9
Tsang, A.: Minkowski valuations on \(L^p\)-spaces. Trans. Am. Math. Soc. 364(12), 6159–6186 (2012). https://doi.org/10.1090/s0002-9947-2012-05681-9
Colesanti, A., Pagnini, D., Tradacete, P., Villanueva, I.: A class of invariant valuations on \({{\rm Lip}} (S^{n-1})\). Adv. Math. 366, 107069–37 (2020). https://doi.org/10.1016/j.aim.2020.107069
Colesanti, A., Pagnini, D., Tradacete, P., Villanueva, I.: Continuous valuations on the space of Lipschitz functions on the sphere. J. Funct. Anal. 280(4), 108873–43 (2021). https://doi.org/10.1016/j.jfa.2020.108873
Ludwig, M.: Fisher information and matrix-valued valuations. Adv. Math. 226(3), 2700–2711 (2011). https://doi.org/10.1016/j.aim.2010.08.021
Ludwig, M.: Valuations on function spaces. Adv. Geom. 11(4), 745–756 (2011). https://doi.org/10.1515/advgeom.2011.039
Ludwig, M.: Valuations on Sobolev spaces. Am. J. Math. 134(3), 827–842 (2012). https://doi.org/10.1353/ajm.2012.0019
Ma, D.: Real-valued valuations on Sobolev spaces. Sci. China Math. 59(5), 921–934 (2016). https://doi.org/10.1007/s11425-015-5101-6
Wang, T.: Semi-valuations on \({\rm BV}(R^n)\). Indiana Univ. Math. J. 63(5), 1447–1465 (2014). https://doi.org/10.1512/iumj.2014.63.5365
Baryshnikov, Y., Ghrist, R., Wright, M.: Hadwiger’s Theorem for definable functions. Adv. Math., vol. 245, pp. 573–586 (2013). https://doi.org/10.1016/j.aim.2013.07.001
Tradacete, P., Villanueva, I.: Valuations on Banach lattices. Int. Math. Res. Not. IMRN 1, 287–319 (2020). https://doi.org/10.1093/imrn/rny129
Alesker, S.: Valuations on convex functions and convex sets and Monge–Ampère operators. Adv. Geom. 19(3), 313–322 (2019). https://doi.org/10.1515/advgeom-2018-0031
Cavallina, L., Colesanti, A.: Monotone valuations on the space of convex functions. Anal. Geom. Metr. Spaces 3(1), 167–211 (2015). https://doi.org/10.1515/agms-2015-0012
Colesanti, A., Ludwig, M., Mussnig, F.: Minkowski valuations on convex functions. Calc. Var. Partial Differ. Equ. 56(6) (2017)
Colesanti, A., Ludwig, M., Mussnig, F.: Valuations on convex functions. Int. Math. Res. Not. IMRN 8, 2384–2410 (2019). https://doi.org/10.1093/imrn/rnx189
Colesanti, A., Ludwig, M., Mussnig, F.: The Hadwiger theorem on convex functions, I (2020). arXiv:2009.03702
Colesanti, A., Ludwig, M., Mussnig, F.: Hessian valuations. Indiana Univ. Math. J. 69, 1275–1215 (2020)
Colesanti, A., Ludwig, M., Mussnig, F.: A homogeneous decomposition theorem for valuations on convex functions. J. Funct. Anal. 279(5), 108573 (2020). https://doi.org/10.1016/j.jfa.2020.108573
Colesanti, A., Ludwig, M., Mussnig, F.: The Hadwiger theorem on convex functions, II (2021). arXiv:2109.09434
Colesanti, A., Ludwig, M., Mussnig, F.: The Hadwiger theorem on convex functions, III: Steiner formulas and mixed Monge–Ampère measures. Calc. Var. Partial Differ. Equ. 61(5) (2022). https://doi.org/10.1007/s00526-022-02288-3
Colesanti, A., Ludwig, M., Mussnig, F.: The Hadwiger theorem on convex functions, IV: The Klain approach. Adv. Math. 413 (2023). https://doi.org/10.1016/j.aim.2022.108832
Knoerr, J.: Smooth valuations on convex functions. J. Differ. Geom. 126(2):801–835 (2024). https://doi.org/10.4310/jdg/1712344223
Knoerr, J.: The support of dually epi-translation invariant valuations on convex functions. J. Funct. Anal. 281(5) (2021). https://doi.org/10.1016/j.jfa.2021.109059
Knoerr, J.: Singular valuations and the Hadwiger theorem on convex functions (2022). arXiv:2209.05158
McMullen, P.: Valuations and Euler-type relations on certain classes of convex polytopes. Proc. Lond. Math. Soc. (3) 35(1), 113–135 (1977). https://doi.org/10.1112/plms/s3-35.1.113
McMullen, P.: Continuous translation invariant valuations on the space of compact convex sets. Arch. Math. 34(1), 377–384 (1980). https://doi.org/10.1007/BF01224974
Goodey, P., Weil, W.: Distributions and valuations. Proc. Lond. Math. Soc. (3) 49(3), 504–516 (1984). https://doi.org/10.1112/plms/s3-49.3.504
Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998). https://doi.org/10.1007/978-3-642-02431-3
Beer, G., Rockafellar, R.T., Wets, R.J.-B.: A characterization of epi-convergence in terms of convergence of level sets. Proc. Am. Math. Soc. 116(3), 753–761 (1992). https://doi.org/10.2307/2159443
Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics, p. 440. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-61497-2
Acknowledgements
The authors would like to thank Monika Ludwig and Fabian Mussnig for many insightful comments and discussions, and the anonimus referee for thorough and constructive comments greatly improving the presentation. The second named author was supported, in part, by the Austrian Science Fund (FWF): 10.55776/P34446, and by the Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.