Skip to main content
Log in

From valuations on convex bodies to convex functions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

A geometric framework relating valuations on convex bodies to valuations on convex functions is introduced. It is shown that a classical result by McMullen can be used to obtain a characterization of continuous, epi-translation invariant, and n-epi-homogeneous valuations on convex functions, which was previously established by Colesanti, Ludwig, and Mussnig. Following an approach by Goodey and Weil, a new characterization of 1-epi-homogeneous valuations is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139003858.005

  2. Alesker, S.: Continuous rotation invariant valuations on convex sets. Ann. Math. (2) 149(3), 977–1005 (1999). https://doi.org/10.2307/121078

    Article  MathSciNet  Google Scholar 

  3. Alesker, S.: Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Funct. Anal. 11(2), 244–272 (2001). https://doi.org/10.1007/PL00001675

    Article  MathSciNet  Google Scholar 

  4. Bernig, A., Fu, J.H.G.: Hermitian integral geometry. Ann. Math. (2) 173(2), 907–945 (2011). https://doi.org/10.4007/annals.2011.173.2.7

    Article  MathSciNet  Google Scholar 

  5. Bernig, A., Fu, J.H.G., Solanes, G.: Integral geometry of complex space forms. Geom. Funct. Anal. 24(2), 403–492 (2014). https://doi.org/10.1007/s00039-014-0251-1

    Article  MathSciNet  Google Scholar 

  6. Haberl, C.: Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. (JEMS) 14(5), 1565–1597 (2012). https://doi.org/10.4171/JEMS/341

    Article  MathSciNet  Google Scholar 

  7. Haberl, C., Parapatits, L.: The centro-affine Hadwiger theorem. J. Am. Math. Soc. 27(3), 685–705 (2014). https://doi.org/10.1090/S0894-0347-2014-00781-5

    Article  MathSciNet  Google Scholar 

  8. Haberl, C., Parapatits, L.: Moments and valuations. Am. J. Math. 138(6), 1575–1603 (2016). https://doi.org/10.1353/ajm.2016.0047

    Article  MathSciNet  Google Scholar 

  9. Ludwig, M., Reitzner, M.: A classification of \({\rm SL}(n)\) invariant valuations. Ann. Math. (2) 172(2), 1219–1267 (2010). https://doi.org/10.4007/annals.2010.172.1223

    Article  MathSciNet  Google Scholar 

  10. Colesanti, A., Lombardi, N.: Valuations on the space of quasi-concave functions. In: Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 2169, pp. 71–105. Springer, Cham (2017)

  11. Colesanti, A., Lombardi, N., Parapatits, L.: Translation invariant valuations on quasi-concave functions. Stud. Math. 243(1), 79–99 (2018). https://doi.org/10.4064/sm170323-7-7

    Article  MathSciNet  Google Scholar 

  12. Mussnig, F.: Valuations on log-concave functions. J. Geom. Anal. 31(6), 6427–6451 (2021). https://doi.org/10.1007/s12220-020-00539-3

    Article  MathSciNet  Google Scholar 

  13. Kone, H.: Valuations on Orlicz spaces and \(L^\phi \)-star sets. Adv. Appl. Math. 52, 82–98 (2014). https://doi.org/10.1016/j.aam.2013.07.004

    Article  MathSciNet  Google Scholar 

  14. Li, J., Ma, D.: Laplace transforms and valuations. J. Funct. Anal. 272(2), 738–758 (2017). https://doi.org/10.1016/j.jfa.2016.09.011

    Article  MathSciNet  Google Scholar 

  15. Tsang, A.: Valuations on \(L^p\)-spaces. Int. Math. Res. Not. IMRN 20, 3993–4023 (2010). https://doi.org/10.1090/S0002-9947-2012-05681-9

    Article  MathSciNet  Google Scholar 

  16. Tsang, A.: Minkowski valuations on \(L^p\)-spaces. Trans. Am. Math. Soc. 364(12), 6159–6186 (2012). https://doi.org/10.1090/s0002-9947-2012-05681-9

    Article  MathSciNet  Google Scholar 

  17. Colesanti, A., Pagnini, D., Tradacete, P., Villanueva, I.: A class of invariant valuations on \({{\rm Lip}} (S^{n-1})\). Adv. Math. 366, 107069–37 (2020). https://doi.org/10.1016/j.aim.2020.107069

    Article  MathSciNet  Google Scholar 

  18. Colesanti, A., Pagnini, D., Tradacete, P., Villanueva, I.: Continuous valuations on the space of Lipschitz functions on the sphere. J. Funct. Anal. 280(4), 108873–43 (2021). https://doi.org/10.1016/j.jfa.2020.108873

    Article  MathSciNet  Google Scholar 

  19. Ludwig, M.: Fisher information and matrix-valued valuations. Adv. Math. 226(3), 2700–2711 (2011). https://doi.org/10.1016/j.aim.2010.08.021

    Article  MathSciNet  Google Scholar 

  20. Ludwig, M.: Valuations on function spaces. Adv. Geom. 11(4), 745–756 (2011). https://doi.org/10.1515/advgeom.2011.039

    Article  MathSciNet  Google Scholar 

  21. Ludwig, M.: Valuations on Sobolev spaces. Am. J. Math. 134(3), 827–842 (2012). https://doi.org/10.1353/ajm.2012.0019

    Article  MathSciNet  Google Scholar 

  22. Ma, D.: Real-valued valuations on Sobolev spaces. Sci. China Math. 59(5), 921–934 (2016). https://doi.org/10.1007/s11425-015-5101-6

    Article  MathSciNet  Google Scholar 

  23. Wang, T.: Semi-valuations on \({\rm BV}(R^n)\). Indiana Univ. Math. J. 63(5), 1447–1465 (2014). https://doi.org/10.1512/iumj.2014.63.5365

    Article  MathSciNet  Google Scholar 

  24. Baryshnikov, Y., Ghrist, R., Wright, M.: Hadwiger’s Theorem for definable functions. Adv. Math., vol. 245, pp. 573–586 (2013). https://doi.org/10.1016/j.aim.2013.07.001

  25. Tradacete, P., Villanueva, I.: Valuations on Banach lattices. Int. Math. Res. Not. IMRN 1, 287–319 (2020). https://doi.org/10.1093/imrn/rny129

    Article  MathSciNet  Google Scholar 

  26. Alesker, S.: Valuations on convex functions and convex sets and Monge–Ampère operators. Adv. Geom. 19(3), 313–322 (2019). https://doi.org/10.1515/advgeom-2018-0031

    Article  MathSciNet  Google Scholar 

  27. Cavallina, L., Colesanti, A.: Monotone valuations on the space of convex functions. Anal. Geom. Metr. Spaces 3(1), 167–211 (2015). https://doi.org/10.1515/agms-2015-0012

    Article  MathSciNet  Google Scholar 

  28. Colesanti, A., Ludwig, M., Mussnig, F.: Minkowski valuations on convex functions. Calc. Var. Partial Differ. Equ. 56(6) (2017)

  29. Colesanti, A., Ludwig, M., Mussnig, F.: Valuations on convex functions. Int. Math. Res. Not. IMRN 8, 2384–2410 (2019). https://doi.org/10.1093/imrn/rnx189

    Article  MathSciNet  Google Scholar 

  30. Colesanti, A., Ludwig, M., Mussnig, F.: The Hadwiger theorem on convex functions, I (2020). arXiv:2009.03702

  31. Colesanti, A., Ludwig, M., Mussnig, F.: Hessian valuations. Indiana Univ. Math. J. 69, 1275–1215 (2020)

    Article  MathSciNet  Google Scholar 

  32. Colesanti, A., Ludwig, M., Mussnig, F.: A homogeneous decomposition theorem for valuations on convex functions. J. Funct. Anal. 279(5), 108573 (2020). https://doi.org/10.1016/j.jfa.2020.108573

    Article  MathSciNet  Google Scholar 

  33. Colesanti, A., Ludwig, M., Mussnig, F.: The Hadwiger theorem on convex functions, II (2021). arXiv:2109.09434

  34. Colesanti, A., Ludwig, M., Mussnig, F.: The Hadwiger theorem on convex functions, III: Steiner formulas and mixed Monge–Ampère measures. Calc. Var. Partial Differ. Equ. 61(5) (2022). https://doi.org/10.1007/s00526-022-02288-3

  35. Colesanti, A., Ludwig, M., Mussnig, F.: The Hadwiger theorem on convex functions, IV: The Klain approach. Adv. Math. 413 (2023). https://doi.org/10.1016/j.aim.2022.108832

  36. Knoerr, J.: Smooth valuations on convex functions. J. Differ. Geom. 126(2):801–835 (2024). https://doi.org/10.4310/jdg/1712344223

  37. Knoerr, J.: The support of dually epi-translation invariant valuations on convex functions. J. Funct. Anal. 281(5) (2021). https://doi.org/10.1016/j.jfa.2021.109059

  38. Knoerr, J.: Singular valuations and the Hadwiger theorem on convex functions (2022). arXiv:2209.05158

  39. McMullen, P.: Valuations and Euler-type relations on certain classes of convex polytopes. Proc. Lond. Math. Soc. (3) 35(1), 113–135 (1977). https://doi.org/10.1112/plms/s3-35.1.113

    Article  MathSciNet  Google Scholar 

  40. McMullen, P.: Continuous translation invariant valuations on the space of compact convex sets. Arch. Math. 34(1), 377–384 (1980). https://doi.org/10.1007/BF01224974

    Article  MathSciNet  Google Scholar 

  41. Goodey, P., Weil, W.: Distributions and valuations. Proc. Lond. Math. Soc. (3) 49(3), 504–516 (1984). https://doi.org/10.1112/plms/s3-49.3.504

    Article  MathSciNet  Google Scholar 

  42. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998). https://doi.org/10.1007/978-3-642-02431-3

  43. Beer, G., Rockafellar, R.T., Wets, R.J.-B.: A characterization of epi-convergence in terms of convergence of level sets. Proc. Am. Math. Soc. 116(3), 753–761 (1992). https://doi.org/10.2307/2159443

    Article  MathSciNet  Google Scholar 

  44. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics, p. 440. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-61497-2

Download references

Acknowledgements

The authors would like to thank Monika Ludwig and Fabian Mussnig for many insightful comments and discussions, and the anonimus referee for thorough and constructive comments greatly improving the presentation. The second named author was supported, in part, by the Austrian Science Fund (FWF): 10.55776/P34446, and by the Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Knoerr.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knoerr, J., Ulivelli, J. From valuations on convex bodies to convex functions. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02902-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02902-z

Mathematics Subject Classification

Navigation