Skip to main content
Log in

On some mean field games and master equations through the lens of conservation laws

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this manuscript we derive a new nonlinear transport equation written on the space of probability measures that allows to study a class of deterministic mean field games and master equations, where the interaction of the agents happens only at the terminal time. The point of view via this transport equation has two important consequences. First, this equation reveals a new monotonicity condition that is sufficient both for the uniqueness of MFG Nash equilibria and for the global in time well-posedness of master equations. Interestingly, this condition is in general in dichotomy with both the Lasry–Lions and displacement monotonicity conditions, studied so far in the literature. Second, in the absence of monotonicity, the conservative form of the transport equation can be used to define weak entropy solutions to the master equation. We construct several concrete examples to demonstrate that MFG Nash equilibria, whether or not they actually exist, may not be selected by the entropy solutions of the master equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ahuja, S.: Wellposedness of mean field games with common noise under a weak monotonicity condition. SIAM J. Control Optim. 54(1), 30–48 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ahuja, S., Ren, W., Yang, T.-W.: Forward–backward stochastic differential equations with monotone functionals and mean field games with common noise. Stochastic Process. Appl. 129(10), 3859–3892 (2019)

    Article  MathSciNet  Google Scholar 

  3. Ambrose, D.M., Mészáros, A.R.: Well-posedness of mean field games master equations involving non-separable local hamiltonians. Trans. Am. Math. Soc. 376(4), 2481–2523 (2023)

    MathSciNet  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Lectures in Mathematics ETH Zürich. Gradient flows in metric spaces and in the space of probability measures, 2nd edn. Birkhäuser, Basel (2008)

    Google Scholar 

  5. Aumann, R.J.: Markets with a continuum of traders. Econometrica 32, 39–50 (1964)

    Article  MathSciNet  Google Scholar 

  6. Bardi, M., Fischer, M.: On non-uniqueness and uniqueness of solutions in finite-horizon mean field games. ESAIM Control Optim. Calc. Var. 25(44), 33 (2019)

    MathSciNet  Google Scholar 

  7. Bayraktar, E., Zhang, X.: On non-uniqueness in mean field games. Proc. Am. Math. Soc. 148(9), 4091–4106 (2020)

    Article  MathSciNet  Google Scholar 

  8. Bayraktar, E., Cecchin, A., Cohen, A., Delarue, F.: Finite state mean field games with Wright–Fisher common noise. J. Math. Pures Appl. 9(147), 98–162 (2021)

    Article  MathSciNet  Google Scholar 

  9. Bensoussan, A., Graber, P.J., Yam, S.C.P.: Control on Hilbert spaces and application to mean field type control theory. arXiv preprint (2020)

  10. Bensoussan, A., Graber, P.J., Yam, S.C.P.: Stochastic control on space of random variables. arXiv preprint arXiv:1903.12602 (2019)

  11. Bertucci, C.: Monotone solutions for mean field games master equations: finite state space and optimal stopping. J. Éc. polytech. Math. 8, 1099–1132 (2021)

    Article  MathSciNet  Google Scholar 

  12. Bianchini, S., Marconi, E.: On the structure of \(L^\infty \)-entropy solutions to scalar conservation laws in one-space dimension. Arch. Ration. Mech. Anal. 226(1), 441–493 (2017)

    Article  MathSciNet  Google Scholar 

  13. Briani, A., Cardaliaguet, P.: Stable solutions in potential mean field game systems. NoDEA Nonlinear Differ. Equ. Appl. 25(1), 1 (2018)

    Article  MathSciNet  Google Scholar 

  14. Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45(2), 824–878 (2017)

    Article  MathSciNet  Google Scholar 

  15. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, vol. 58. Springer, New York (2004)

  16. Cardaliaguet, P., Cirant, M., Porretta, A.: Splitting methods and short time existence for the master equations in mean field games. J. Eur. Math. Soc. (JEMS) (to appear)

  17. Cardaliaguet, P., Delarue, F., Lasry, J.-M., Lions, P.-L.: The master equation and the convergence problem in mean field games. Ann. Math. Stud. 201. Princeton University Press, Princeton (2019)

  18. Cardaliaguet, P., Porretta, A.: An introduction to mean field game theory. In: Mean Field Games, vol. 2281, pp. 1–158. Lecture Notes in Mathematics. Springer, Cham (2020)

  19. Cardaliaguet, P., Souganidis, P.E.: On first order mean field game systems with a common noise. Ann. Appl. Probab. 32(3), 2289–2326 (2022)

    Article  MathSciNet  Google Scholar 

  20. Carmona, R., Delarue, F.: Probabilistic theory of mean field games with applications. II. Mean field games with common noise and master equations. In: Probability Theory and Stochastic Modelling, vol. 84. Springer, Cham (2018)

  21. Carmona, R., Delarue, F.: Probabilistic theory of mean field games with applications. I. Mean field FBSDEs, control, and games. In: Probability Theory and Stochastic Modelling, vol. 83. Springer, Cham (2018)

  22. Carmona, R., Delarue, F.: Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51(4), 2705–2734 (2013)

    Article  MathSciNet  Google Scholar 

  23. Cecchin, A., Delarue, F.: Weak solutions to the master equation of potential mean field games. arXiv:2204.04315 (2022)

  24. Cecchin, A., Delarue, F.: Selection by vanishing common noise for potential finite state mean field games. Commun. Partial Differ. Equ. 47(1), 89–168 (2022)

    Article  MathSciNet  Google Scholar 

  25. Cecchin, A., Dai Pra, P., Fischer, M., Pelino, G.: On the convergence problem in mean field games: a two state model without uniqueness. SIAM J. Control Optim. 57(4), 2443–2466 (2019)

    Article  MathSciNet  Google Scholar 

  26. Chassagneux, J.-F., Crisan, D., Delarue, F.: A probabilistic approach to classical solutions of the master equation for large population equilibria. Mem. Am. Math. Soc. 280(1379), v123 (2022)

    MathSciNet  Google Scholar 

  27. Chassagneux, J.-F., Szpruch, Ł, Tse, A.: Weak quantitative propagation of chaos via differential calculus on the space of measures. Ann. Appl. Probab. 32(3), 1929–1969 (2022)

    Article  MathSciNet  Google Scholar 

  28. Cirant, M.: On the existence of oscillating solutions in non-monotone mean-field games. J. Differ. Equ. 266(12), 8067–8093 (2019)

    Article  MathSciNet  Google Scholar 

  29. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, 4th edn. Springer, Berlin (2016)

  30. Delarue, F.: Restoring uniqueness to mean-field games by randomizing the equilibria. Stoch. Partial Differ. Equ. Anal. Comput. 7(4), 598–678 (2019)

    MathSciNet  Google Scholar 

  31. Delarue, F., Tchuendom, R.F.: Selection of equilibria in a linear quadratic mean-field game. Stoch. Process. Appl. 130(2), 1000–1040 (2020)

    Article  MathSciNet  Google Scholar 

  32. Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics Series. American Mathematical Society, New York (2010)

  33. Gangbo, W., Mészáros, A.R.: Global well-posedness of master equations for deterministic displacement convex potential mean field games. Commun. Pure Appl. Math. 75(12), 2685–2801 (2022)

    Article  MathSciNet  Google Scholar 

  34. Gangbo, W., Święch, A.: Existence of a solution to an equation arising from the theory of mean field games. J. Differ. Equ. 259(11), 6573–6643 (2015)

    Article  MathSciNet  Google Scholar 

  35. Gangbo, W., Tudorascu, A.: On differentiability in the Wasserstein space and well-posedness for Hamilton–Jacobi equations. J. Math. Pures Appl. 9(125), 119–174 (2019)

    Article  MathSciNet  Google Scholar 

  36. Gangbo, W., Mészáros, A.R., Mou, C., Zhang, J.: Mean field games master equations with nonseparable Hamiltonians and displacement monotonicity. Ann. Probab. 50(6), 2178–2217 (2022)

    Article  MathSciNet  Google Scholar 

  37. Graber, P.J., Mészáros, A.R.: On monotonicity conditions for mean field games. J. Funct. Anal. 285(9), 110095 (2023)

    Article  MathSciNet  Google Scholar 

  38. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

    Article  MathSciNet  Google Scholar 

  39. Kružkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR-Sb. 10(2), 217 (1970)

    Article  Google Scholar 

  40. Ladyžhenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasi-linear equations of parabolic type. In: Translations of Mathematical Monographs, vol. 23. American Mathematical Society, New York (1968)

  41. Lasry, J.-M., Lions, P.-L.: Jeux à champ. moyen I-Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    Article  MathSciNet  Google Scholar 

  42. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II-Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    Article  MathSciNet  Google Scholar 

  43. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  Google Scholar 

  44. Lasry, J.-M., Lions, P.-L., Seeger, B.: Dimension reduction techniques in deterministic mean field games. Commun. Partial Differ. Equ. 47(4), 701–723 (2022)

    Article  MathSciNet  Google Scholar 

  45. Lions, P.-L.: Théorie des jeux de champ moyen et applications. In: Cours au Collège de France (2007) (2012)

  46. Mayorga, S.: Short time solution to the master equation of a first order mean field game. J. Differ. Equ. 268(10), 6251–6318 (2020)

    Article  MathSciNet  Google Scholar 

  47. Mészáros, A.R., Mou, C.: Mean field games systems under displacement monotonicity. arXiv preprint arXiv:2109.06687 (2021)

  48. Mou, C., Zhang, J.: Mean field game master equations with anti-monotonicity conditions. arXiv:2201.10762 (2022)

  49. Mou, C., Zhang, J.: Wellposedness of second order master equations for mean field games with nonsmooth data. Mem. Am. Math. Soc. (to appear)

  50. Pardoux, É., Tang, S.: Forward–backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114(2), 123–150 (1999)

    Article  MathSciNet  Google Scholar 

  51. Tchuendom, R.F.: Uniqueness for linear-quadratic mean field games with common noise. Dyn. Games Appl. 8(1), 199–210 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Both authors are grateful to Alberto Bressan and Elio Marconi for the discussions about the structure of entropy solutions for scalar conservation laws in the case of non-convex flux functions. PJG acknowledges the support of the National Science Foundation through NSF Grants DMS-2045027 and DMS-1905449. We acknowledge the support of the Heilbronn Institute for Mathematical Research and the UKRI/EPSRC Additional Funding Programme for Mathematical Sciences through a focused research grant “The master equation in mean field games”. ARM has also been partially supported by the EPSRC via the NIA with grant number EP/X020320/1 and by the King Abdullah University of Science and Technology Research Funding (KRF) under Award No. ORA-2021-CRG10-4674.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jameson Graber.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graber, P.J., Mészáros, A.R. On some mean field games and master equations through the lens of conservation laws. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02859-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02859-z

Navigation