Skip to main content
Log in

Projection constants for spaces of Dirichlet polynomials

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Given a frequency sequence \(\omega =(\omega _n)\) and a finite subset \(J \subset {\mathbb {N}}\), we study the space \({\mathscr {H}}_{\infty }^{J}(\omega )\) of all Dirichlet polynomials \(D(s):= \sum \nolimits _{n \in J} a_n e^{-\omega _n s}, \, s \in {\mathbb {C}}\). The main aim is to prove asymptotically correct estimates for the projection constant \(\varvec{\lambda }\big ({\mathscr {H}}_\infty ^{J}(\omega ) \big )\) of the finite dimensional Banach space \({\mathscr {H}}_\infty ^{J}(\omega )\) equipped with the norm \(\Vert D\Vert = \sup _{\text {Re}\,s>0} |D(s)|\). Based on harmonic analysis on \(\omega \)-Dirichlet groups, we prove the formula \( \varvec{\lambda }\big ({\mathscr {H}}_\infty ^{J}(\omega ) \big ) ~ = ~ \displaystyle \lim _{T \rightarrow \infty } \frac{1}{2T} \int _{-T}^T \Big |\sum _{n \in J} e^{-i\omega _n t}\Big |\,dt, \) and apply it to various concrete frequencies \(\omega \) and index sets J. Combining with a recent deep result of Harper from probabilistic analytic number theory, we for the space \({\mathscr {H}}_\infty ^{\le x}\big ( (\log n)\big )\) of all ordinary Dirichlet polynomials \(D(s) = \sum _{n \le x} a_n n^{-s}\) of length x show the asymptotically correct order \( \varvec{\lambda }\big ({\mathscr {H}}_\infty ^{\le x}\big ( (\log n)\big )\big ) \sim \sqrt{x}/(\log \log x)^{\frac{1}{4}}. \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data were used in the conduct of this study.

References

  1. Albiac, F., Kalton, N.J.: Topics in Banach Space Theory, vol. 233. Springer, Berlin (2006)

    Google Scholar 

  2. Babenko, K.I.: On the mean convergence of multiple Fourier series and the asymptotics of the Dirichlet kernel of spherical means. Eurasian Math. J. 9(4), 22–60 (2018)

    Article  MathSciNet  Google Scholar 

  3. Balasubramanian, R., Calado, B., Queffélec, H.: The Bohr inequality for ordinary Dirichlet series. Stud. Math. 175(3), 285–304 (2006)

    Article  MathSciNet  Google Scholar 

  4. Boas, H.P., Khavinson, D.: Bohr’s power series theorem in several variables. Proc. Amer. Math. Soc. 125(10), 2975–2979 (1997)

    Article  MathSciNet  Google Scholar 

  5. Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletschen Reihen \(\sum \frac{a_n}{n^s}\). Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 441–488, 1913 (1913)

    Google Scholar 

  6. Bombieri, E., Bourgain, J.: A remark on Bohr’s inequality. Int. Math. Res. Not. 2004(80), 4307–4330 (2004)

    Article  MathSciNet  Google Scholar 

  7. Bondarenko, A., Seip, K.: Helson’s problem for sums of a random multiplicative function. Mathematika 62(1), 101–110 (2016)

    Article  MathSciNet  Google Scholar 

  8. Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., Seip, K.: The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math. (2) 174(1), 485–497 (2011)

    Article  MathSciNet  Google Scholar 

  9. Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Dirichlet Series and Holomorphic Functions in High Dimensions, volume 37 of New Mathematical Monographs. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  10. Defant, A., Schoolmann, I.: \({\cal{H} }_p \)-theory of general Dirichlet series. J. Fourier Anal. Appl. 25(6), 3220–3258 (2019)

    Article  MathSciNet  Google Scholar 

  11. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, volume 43 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2008). (paperback reprint of the hardback edition 1995 edition)

    Google Scholar 

  12. Erdős, P., Sarközy, A.: On the number of prime factors of integers. Acta Sci. Math. 42, 237–246 (1980)

    MathSciNet  Google Scholar 

  13. Faber, G.: Über die interpolatorische Darstellung stetiger Funktionen. Jahresber. Dtsch. Math.-Ver. 23, 192–210 (1914)

    Google Scholar 

  14. Garling, D.J.H., Gordon, Y.: Relations between some constants associated with finite dimensional Banach spaces. Isr. J. Math. 9, 346–361 (1971)

    Article  MathSciNet  Google Scholar 

  15. Gordon, Y.: On the projection and Macphail constants of \(l_{n}^{p}\) spaces. Isr. J. Math. 6, 295–302 (1968)

    Article  Google Scholar 

  16. Götze, F.: Lattice point problems and values of quadratic forms. Invent. Math. 157(1), 195–226 (2004)

    Article  MathSciNet  Google Scholar 

  17. Graham, C.C., Hare, K.E.: Interpolation and Sidon Sets for Compact Groups. CMS Books Math./Ouvrages Math. SMC, Springer, New York, NY (2013)

    Book  Google Scholar 

  18. Grünbaum, B.: Projection constants. Trans. Am. Math. Soc. 95, 451–465 (1960)

    Article  MathSciNet  Google Scholar 

  19. Harper, A.J.: Moments of random multiplicative functions. II: high moments. Algebra Number Theory 13(10), 2277–2321 (2019)

    Article  MathSciNet  Google Scholar 

  20. Heath-Brown, D.R.: Lattice points in the sphere. In: Number theory in Progress. Proceedings of the International Conference Organized by the Stefan Banach International Mathematical Center in Honor of the 60th Birthday of Andrzej Schinzel, Zakopane, Poland, June 30–July 9, 1997. Volume 2: Elementary and Analytic Number Theory, pp. 883–892. de Gruyter, Berlin (1999)

  21. Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in \(L^ 2(0,1)\). Duke Math. J. 86(1), 1–37 (1997)

    Article  MathSciNet  Google Scholar 

  22. Helson, H.: Dirichlet Series. Henry Helson, Berkeley, CA (2005)

    Google Scholar 

  23. Helson, H.: Hankel forms. Stud. Math. 1(198), 79–84 (2010)

    Article  MathSciNet  Google Scholar 

  24. Kadets, M.I., Snobar, M.G.: Some functionals over a compact Minkowski space. Math. Notes 10, 694–696 (1972)

    Article  Google Scholar 

  25. Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  26. König, H.: Projections onto symmetric spaces. Quaest. Math. 18(1–3), 199–220 (1995)

    Article  MathSciNet  Google Scholar 

  27. König, H., Lewis, D.R.: A strict inequality for projection constants. J. Funct. Anal. 74, 328–332 (1987)

    Article  MathSciNet  Google Scholar 

  28. König, H., Schütt, C., Tomczak-Jaegermann, N.: Projection constants of symmetric spaces and variants of Khintchine’s inequality. J. Reine Angew. Math. 511, 1–42 (1999)

    Article  MathSciNet  Google Scholar 

  29. Kwapién, S., Schütt, C.: Some combinatorial and probabilistic inequalities and their application to Banach space theory. Stud. Math. 82, 81–106 (1985)

    Article  MathSciNet  Google Scholar 

  30. Lewis, D.R.: An upper bound for the projection constant. Proc. Am. Math. Soc. 103(4), 1157–1160 (1988)

    Article  MathSciNet  Google Scholar 

  31. Liflyand, E.R.: Lebesgue constants of multiple Fourier series. Online J. Anal. Comb. 1, 112 (2006)

    MathSciNet  Google Scholar 

  32. Light, W.A.: Minimal projections in tensor-product spaces. Math. Z. 191, 633–643 (1986)

    Article  MathSciNet  Google Scholar 

  33. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Sequence Spaces, volume 92 of Ergeb. Math. Grenzgeb. Springer, Berlin (1977)

    Google Scholar 

  34. Natanson, I.P.: Constructive Theory of Functions, vol. 1. US Atomic Energy Commission, Office of Technical Information Extension (1961)

  35. Pisier, G.: Factorization of Linear Operators and Geometry of Banach Spaces, volume 60 of Regional Conference Series in Mathematics. American Mathematical Society (AMS), Providence, RI (1986)

    Book  Google Scholar 

  36. Queffelec, H., Queffelec, M.: Diophantine Approximation and Dirichlet Series, volume 80 of Texts for Reading Mathematics. Hindustan Book Agency, New Delhi (2020). (2nd extended edition edition)

    Book  Google Scholar 

  37. Rieffel, M.A.: Lipschitz extension constants equal projection constants. In: Operator Theory, Operator Algebras, and Applications. Proceedings of the 25th Great Plains Operator Theory Symposium, University of Central Florida, FL, USA, June 7–12 2005, pp. 147–162. American Mathematical Society (AMS), Providence, RI (2006)

  38. Rudin, W.: Some theorems on Fourier coefficients. Proc. Am. Math. Soc. 10, 855–859 (1959)

    Article  MathSciNet  Google Scholar 

  39. Rudin, W.: Trigonometric series with gaps. J. Math. Mech. 9, 203–227 (1960)

    MathSciNet  Google Scholar 

  40. Rudin, W.: Projections on invariant subspaces. Proc. Am. Math. Soc. 13, 429–432 (1962)

    Article  MathSciNet  Google Scholar 

  41. Rudin, W.: New Constructions of Functions Holomorphic in the Unit Ball of \(C^n\), volume 63 of Regional Conference Series in Mathematics. American Mathematical Society (AMS), Providence, RI (1986)

    Google Scholar 

  42. Rutovitz, D.: Some parameters associated with finite-dimensional Banach spaces. J. Lond. Math. Soc. 40, 241–255 (1965)

    Article  MathSciNet  Google Scholar 

  43. Saksman, E., Seip, K.: Some open questions in analysis for Dirichlet series. In: Recent progress on operator theory and approximation in spaces of analytic functions. Proceedings of the conference on completeness problems, Carleson measures, and spaces of analytic functions, Institut Mittag-Leffler, Djursholm, Sweden, Providence, RI: American Mathematical Society (AMS), vol. 679, pp. 179–191 (2016). https://doi.org/10.1090/conm/679/13675

  44. Shapiro, H.S.: Extremal problems for polynomials and power series. PhD thesis, Massachusetts Institute of Technology (1952)

  45. Tenenbaum, G.: Introduction à la théorie analytique et probabiliste des nombres, volume 1 of Cours Spéc. (Paris). Société Mathématique de France, Paris (1995) (2ème éd. edition)

  46. Tomczak-Jaegermann, N.: Banach–Mazur Distances and Finite-Dimensional Operator Ideals, volume 38 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow (1989)

    Google Scholar 

  47. Weissler, F.B.: Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal. 37, 218–234 (1980)

    Article  MathSciNet  Google Scholar 

  48. Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge University Press, Cambridge (1996)

    Google Scholar 

Download references

Acknowledgements

We thank the referee for careful reading of the manuscript and valuable comments, which led to improvements in the presentation. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Galicer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the fourth author was supported by the National Science Centre (NCN), Poland, Project 2019/33/B/ST1/00165; the second, third and fifth author were supported by CONICET-PIP 11220200102336 and PICT 2018-4250. The research of the fifth author is additionally supported by ING-586-UNR.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Defant, A., Galicer, D., Mansilla, M. et al. Projection constants for spaces of Dirichlet polynomials. Math. Ann. (2024). https://doi.org/10.1007/s00208-023-02781-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-023-02781-w

Mathematics Subject Classification

Navigation