Skip to main content
Log in

The n-dimensional analogue of a variational problem of Euler

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For the f-weighted area-functional

$$\begin{aligned} \mathcal {E}_f (M) = \int _M f(x) d\mathcal {H}_n (x) \end{aligned}$$

we prove non-existence of compact stationary surfaces when \(f = \vert x \vert ^\alpha \) and \(\alpha > -n\), while for \(\alpha = -n\) all spheres \(S_R (0)\) are shown to be stable and even minimizers for \(\mathcal {E}_f\). Moreover any compact and f-stable surface is a sphere \(S_R(0)\) in case \(\alpha = -n\). Furthermore we prove stability of the minimal cones over products of spheres under suitable conditions on \(\alpha \) and show non-existence of nontrivial cones in case these conditions do not hold. Finally we show that the cones over products of spheres \(S^{k-1} \times S^{k-1} \subset \mathbb {R}^k \times \mathbb {R}^k, ~k \ge 2\), are in fact minimizers for \(\mathcal {E}_f\), if \(1 \le \alpha \le 2 (k-1)\). In particular the cone over the Clifford torus minimizes \(\mathcal {E}_f, ~f=\vert x \vert ^\alpha \) and \(1 \le \alpha \le 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carathédory, C.: Variationsrechnung und Partielle Differentialgleichungen erster Ordnung. Teubner, Leipzig und Berlin (1935)

    Google Scholar 

  3. Davini, A.: On calibrations for Lawson’s cones. Rend. Sem. Mat. Univ. Padova 11, 55–70 (2004)

    MathSciNet  MATH  Google Scholar 

  4. De Phillipis, G., Paolini, E.: A short proof of the minimality of the Simons’ cone. Rend. Sem. Mat. Univ. Padova 121, 233–241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dierkes, U.: Minimal hypercones and \(C^{0, 1/2}\)-minimizers for a singular variational problem. Indiana Univ. Math. J. 37, 841–863 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dierkes, U., Hildebrandt, S., Tromba, A.: Global Analysis of Minimal Surfaces. Springer Grundlehren der mathematischen Wissenschaft, 341 (2010)

  7. Dierkes, U., Groh, N.: Symmetric solutions of the singular minimal surface equation. Ann. Glob. Anal. Geom. 60, 431–453 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Euler, L.: Methodus Inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti, Lausanne et Genevae (1744)

  9. Fouladgar, K., Simon, L.: The symmetrical minimal surface equation. Indiana Univ. Math. J. 69, 331–366 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huisken, G.: Asymptotic behaviour for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)

    Article  MATH  Google Scholar 

  11. Lawlor, G.: A sufficient criterion for a cone to be area-minimizing. Mem. Am. Math Soc. No. 446, 111 (1991)

    MathSciNet  MATH  Google Scholar 

  12. Lawson, H.B.: The equivariant Plateau problem and interior regularity. Trans. Am. Math. Soc. 173, 231–249 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mason, M.: Curves of minimum moment on inertia with respect to a point. Ann. Math. 7(4), 165–172 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mooney, C., Yang, Y.: A proof by foliation that Lawson’s cones are \(A_\Phi \)-minimizing. Discrete Contin. Dyn Syst. 41, 5291–5302 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Morgan, F.: The cone over the Clifford torus in \({\mathbb{R}}^4\) is \(\Phi \)-minimizing. Math. Ann. 289, 341–354 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simões, P.: A class of minimal cones in \({\mathbb{R}}^n, n \ge 8\), that minimize area. Ph.D. thesis, UC-Berkeley (1973)

  17. Simon, L.: Lectures on Geometric measure theory. In proc. Centre Math. Anal., 3 (1984), Australian Nat. University, Centre Math. Analysis, Canberra

  18. Simon, L.: Stable minimal hypersurfaces in \({\mathbb{R}}^{N+1+l}\) with singular set an arbitrary closed \(K \subset \{0\} \times {\mathbb{R}}^l\). Preprint (2021)

  19. Tennstädt, T.: Hölder continuity for continuous solutions of the singular minimal surface equation with arbitrary zero set. Calculus of Variations and Partial Differential Equations, 56 (2017)

  20. Tonelli, L.: Fondamenti di calcolo della variazioni, 1 (1921)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Dierkes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dierkes, U., Huisken, G. The n-dimensional analogue of a variational problem of Euler. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02726-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-023-02726-3

Mathematics Subject Classification

Navigation