Abstract
Chord measures and \(L_p\) chord measures were recently introduced by Lutwak-Xi-Yang-Zhang by establishing a variational formula regarding a family of fundamental integral geometric invariants called chord integrals. Prescribing the \(L_p\) chord measure is known as the \(L_p\) chord Minkowski problem, which includes the \(L_p\) Minkowski problem heavily studied in the past 2 decades as special cases. In the current work, we solve the \(L_p\) chord Minkowski problem when \(0\le p<1\), without symmetry assumptions.
Similar content being viewed by others
Data availability statement
This manuscript has no associated data.
Notes
As a comparison, the classical Minkowski problem studies the surface area measure which is also known as the area measure \(S_{n-1}\).
References
Minkowski, H.: Volumen und Oberfläche. Math. Ann. 57(4), 447–495 (1903)
Aleksandrov, A.: Über die Oberflächenfunktion eines konvexen Körpers. (Bemerkung zur Arbeit “Zur Theorie der gemischten Volumina von konvexen Körpern”). Rec. Math. N.S. [Mat. Sbornik], 6(48):167–174, (1939)
Cheng, S.Y., Yau, S.T.: On the regularity of the solution of the \(n\)-dimensional Minkowski problem. Comm. Pure Appl. Math. 29, 495–516 (1976)
Pogorelov, A. V.: The Minkowski multidimensional problem. V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, (1978)
Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) 130(1), 189–213 (1989)
Caffarelli, L.A.: A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. Math. (2) 131(1), 129–134 (1990)
Caffarelli, L.: Interior \(W^{2, p}\) estimates for solutions of the Monge-Ampère equation. Ann. Math. 2(131), 135–150 (1990)
Guan, B., Guan, P.: Convex hypersurfaces of prescribed curvatures. Ann. Math. 2(156), 655–673 (2002)
Guan, P., Li, J., Li, Y.: Hypersurfaces of prescribed curvature measure. Duke Math. J. 161, 1927–1942 (2012)
Guan, P., Ma, X.-N.: The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation. Invent. Math. 151, 553–577 (2003)
Guan, Pengfei, Ma, Xi-Nan., Zhou, Feng: The Christofel-Minkowski problem. III. Existence and convexity of admissible solutions. Comm. Pure Appl. Math. 59(9), 1352–1376 (2006)
Gardner, R.J.: A positive answer to the Busemann-Petty problem in three dimensions. Ann. Math. 2(140), 435–447 (1994)
Gardner, R.J., Koldobsky, A., Schlumprecht, T.: An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann. Math. 2(149), 691–703 (1999)
Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)
Zhang, G.: A positive solution to the Busemann-Petty problem in \(\mathbb{R} ^4\). Ann. Math. 2(149), 535–543 (1999)
Huang, Y., Lutwak, E., Yang, D., Zhang, G.: Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math. 216(2), 325–388 (2016)
Böröczky, K.J., Henk, M., Pollehn, H.: Subspace concentration of dual curvature measures of symmetric convex bodies. J. Differ. Geom. 109(3), 411–429 (2018)
Chen, H., Chen, S., Li, Q.-R.: Variations of a class of Monge-Ampère-type functionals and their applications. Anal. PDE 14(3), 689–716 (2021)
Chen, C., Huang, Y., Zhao, Y.: Smooth solutions to the \(L_p\) dual Minkowski problem. Math. Ann. 373(3–4), 953–976 (2019)
Chen, S., Li, Q.-R.: On the planar dual Minkowski problem. Adv. Math. 333, 87–117 (2018)
Gardner, R.J., Hug, D., Weil, W., Xing, S., Ye, D.: General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem I. Calc. Var. Partial Differ. Eqs. 58(1), 12 (2019)
Henk, M., Pollehn, H.: Necessary subspace concentration conditions for the even dual Minkowski problem. Adv. Math. 323, 114–141 (2018)
Li, Q.-R., Sheng, W., Wang, X.-J.: Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems. J. Eur. Math. Soc. (JEMS) 22(3), 893–923 (2020)
Liu, Y., Lu, J.: A flow method for the dual Orlicz-Minkowski problem. Trans. Amer. Math. Soc. 373(8), 5833–5853 (2020)
Zhao, Y.: Existence of solutions to the even dual Minkowski problem. J. Differ. Geom. 110(3), 543–572 (2018)
Knüpfer, Hans, Muratov, Cyrill B.: On an isoperimetric problem with a competing nonlocal term I: The planar case. Comm. Pure Appl. Math. 66(7), 1129–1162 (2013)
Knüpfer, Hans, Muratov, Cyrill B.: On an isoperimetric problem with a competing nonlocal term II: The general case. Comm. Pure Appl. Math. 67(12), 1974–1994 (2014)
Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Comm. Math. Phys. 336(1), 441–507 (2015)
Haddad, J., Ludwig, M.: Affine fractional \({L}^p\) sobolev inequalities (2022)
Lutwak, E., Xi, D., Yang, D., Zhang, G.: Chord measure in integral geometry and their Minkowski problems. Comm. Pure Appl. Math., in press
Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The logarithmic Minkowski problem. J. Amer. Math. Soc. 26(3), 831–852 (2013)
Xi, D., Yang, D., Zhang, G., Zhao, Y.: The \({L}_p\) chord Minkowski problem. Advanced Nonlinear Studies, in press
Lutwak, E.: The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)
Lutwak, E.: The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)
Chou, K.-S., Wang, X.-J.: The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006)
Hug, D., Lutwak, E., Yang, D., Zhang, G.: On the \(L_p\) Minkowski problem for polytopes. Discrete Comput. Geom. 33, 699–715 (2005)
Lutwak, E., Oliker, V.: On the regularity of solutions to a generalization of the Minkowski problem. J. Differ. Geom. 41, 227–246 (1995)
Lutwak, E., Yang, D., Zhang, G.: On the \(L_p\)-Minkowski problem. Trans. Amer. Math. Soc. 356, 4359–4370 (2004)
Jian, H., Lu, J., Wang, X.-J.: Nonuniqueness of solutions to the \(L_p\)-Minkowski problem. Adv. Math. 281, 845–856 (2015)
Jian, H., Lu, J., Zhu, G.: Mirror symmetric solutions to the centro-affine Minkowski problem. Calc. Var. Partial Differ. Eqs. 55, 41 (2016)
Zhu, G.: The centro-affine Minkowski problem for polytopes. J. Differ. Geom. 101, 159–174 (2015)
Barthe, F., Guédon, O., Mendelson, S., Naor, A.: A probabilistic approach to the geometry of the \(l^n_p\)-ball. Ann. Probab. 33, 480–513 (2005)
Böröczky, K.J., Henk, M.: Cone-volume measure of general centered convex bodies. Adv. Math. 286, 703–721 (2016)
Henk, M., Linke, E.: Cone-volume measures of polytopes. Adv. Math. 253, 50–62 (2014)
Ludwig, M.: General affine surface areas. Adv. Math. 224, 2346–2360 (2010)
Ludwig, M., Reitzner, M.: A classification of \({\rm SL}(n)\) invariant valuations. Ann. Math. 2(172), 1219–1267 (2010)
Stancu, A.: The discrete planar \(L_0\)-Minkowski problem. Adv. Math. 167, 160–174 (2002)
Stancu, A.: On the number of solutions to the discrete two-dimensional \(L_0\)-Minkowski problem. Adv. Math. 180, 290–323 (2003)
Xiong, G.: Extremum problems for the cone volume functional of convex polytopes. Adv. Math. 225, 3214–3228 (2010)
Haberl, C., Schuster, F.E.: Asymmetric affine \(L_p\) Sobolev inequalities. J. Funct. Anal. 257, 641–658 (2009)
Lutwak, E., Yang, D., Zhang, G.: Sharp affine \(L_p\) Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)
Wang, T.: The affine Sobolev-Zhang inequality on \(BV(\mathbb{R} ^n)\). Adv. Math. 230, 2457–2473 (2012)
Bianchi, G., Böröczky, K., Colesanti, A., Yang, D.: The \(L_p\)-Minkowski problem for \(-n<p<1\). Adv. Math. 341, 493–535 (2019)
Guang, Q., Li, Q.-R., Wang, X.-J.: The \(l_p\)-minkowski problem with super-critical exponents, (2022)
Zhu, G.: The logarithmic Minkowski problem for polytopes. Adv. Math. 262, 909–931 (2014)
Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn-Minkowski inequality. Adv. Math. 231, 1974–1997 (2012)
Chen, S., Huang, Y., Li, Q.-R., Liu, J.: The \(L_ p\)-Brunn-Minkowski inequality for \(p<1\). Adv. Math. 368, 107166 (2020)
Colesanti, A., Livshyts, G., Marsiglietti, A.: On the stability of Brunn-Minkowski type inequalities. J. Funct. Anal. 273(3), 1120–1139 (2017)
Kolesnikov, A.V., Livshyts, G.: On the Local Version of the Log-Brunn-Minkowski Conjecture and Some New Related Geometric Inequalities. Int. Math. Res. Not. IMRN 18, 14427–14453 (2022)
Kolesnikov, Alexander, Milman, Emanuel. Local \(L^p\)-Brunn–Minkowski inequalities for \(p<1\). Mem. Amer. Math. Soc., 277(1360), (2022)
Milman, E.: Centro-affine differential geometry and the log-minkowski problem. J. Eur. Math. Soc. (JEMS), accepted
Putterman, E.: Equivalence of the local and global versions of the \(L^p\)-Brunn-Minkowski inequality. J. Funct. Anal. 280(9), 108956 (2021)
Saroglou, C.: Remarks on the conjectured log-Brunn-Minkowski inequality. Geom. Dedicata 177, 353–365 (2015)
Zhu, G.: The \(L_p\) Minkowski problem for polytopes for \(0<p<1\). J. Funct. Anal. 269, 1070–1094 (2015)
Chen, S., Li, Q.-R., Zhu, G.: On the \(L_p\) Monge-Ampère equation. J. Differ. Eqs. 263(8), 4997–5011 (2017)
Chen, S., Li, Q.-R., Zhu, G.: The logarithmic Minkowski problem for non-symmetric measures. Trans. Amer. Math. Soc. 371(4), 2623–2641 (2019)
Schneider, R.: Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition (2014)
Santaló, L. A.: Integral geometry and geometric probability. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 2004. With a foreword by Mark Kac
Ren, D.: Topics in integral geometry, volume 19 of Series in Pure Mathematics. World Scientific Publishing Co., Inc., River Edge, NJ, 1994. Translated from the Chinese and revised by the author, With forewords by Shiing Shen Chern and Chuan-Chih Hsiung
Zhang, G.: Dual kinematic formulas. Trans. Amer. Math. Soc. 351, 985–995 (1999)
Acknowledgements
The authors are extremely grateful to the referees for their many valuable comments and suggestions. Research of Guo was supported, in part, by NSFC Grants 12126319 and 12126368. Research of Xi was supported, in part, by NSFC Grant 12071277 and STCSM Grant 20JC1412600. Research of Zhao was supported, in part, by NSF Grant DMS–2132330.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declared that they have no conflicts of interest to this work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Guo, L., Xi, D. & Zhao, Y. The \(L_p\) chord Minkowski problem in a critical interval. Math. Ann. 389, 3123–3162 (2024). https://doi.org/10.1007/s00208-023-02721-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00208-023-02721-8