Skip to main content

Advertisement

Log in

Hollenbeck–Verbitsky conjecture on best constant inequalities for analytic and co-analytic projections

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we address the problem of finding the best constants in inequalities of the form:

$$\begin{aligned} \big \Vert \big (|P_+f|^s+|P_-f|^s\big )^{\frac{1}{s}}\big \Vert _{L^p({{\mathbb {T}}})}\le A_{p,s} \Vert f\Vert _{L^p({{\mathbb {T}}})}, \end{aligned}$$

where \(P_+f\) and \(P_-f\) denote analytic and co-analytic projection of a complex-valued function \(f \in L^p({{\mathbb {T}}}),\) for \(p \ge 2\) and all \(s>0\), thus proving Hollenbeck–Verbitsky conjecture from (Oper Theory Adva Appl 202:285–295, 2010). We also prove the same inequalities for \(1<p\le \frac{4}{3}\) and \(s\le \sec ^2\frac{\pi }{2p}\) and confirm that \(s=\sec ^2\frac{\pi }{2p}\) is the sharp cutoff for s. The proof uses a method of plurisubharmonic minorants and an approach of proving the appropriate “elementary” inequalities that seems to be new in this topic. We show that this result implies best constants inequalities for the projections on the real-line and half-space multipliers on \({\mathbb {R}}^n\) and an analog for analytic martingales. A remark on an isoperimetric inequality for harmonic functions in the unit disk is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Baernstein, A., II.: Some sharp inequalities for conjugate functions. Indiana Univ. Math. J. 27, 833–852 (1978)

    Article  MathSciNet  Google Scholar 

  2. Banuelos, R., Wang, G.: Sharp inequalities for martingales with applications to the Beurling–Ahlfors transform and Riesz transforms. Duke Math. J. 80, 575–600 (1995)

    Article  MathSciNet  Google Scholar 

  3. Burkholder, D.L.: Boundary value problems and sharp inequalities for martingale transforms. Ann. Probab. 12, 647–702 (1984)

    Article  MathSciNet  Google Scholar 

  4. Davis, B.: On the weak type (1,1) inequality for conjugate functions. Proc. Am. Math. Soc. 44, 307–311 (1974)

    MathSciNet  Google Scholar 

  5. Ding, Y., Grafakos, L., Zhu, K.: On the norm of the operator \(aI+bH\) on \(L^p({\mathbb{R} })\). Bull. Korean Math. Soc. 55(4), 1209–1219 (2018)

    MathSciNet  Google Scholar 

  6. Duren, P.: Theory of \(H^p\) spaces. Academic Press, New York (1970)

    Google Scholar 

  7. Essen, M.: A superharmonic proof of M. Riesz conjugate function theorem. Ark. Mat. 22(1–2), 241–249 (1984)

    Article  MathSciNet  Google Scholar 

  8. Garnett, J.B.: Bounded Analytic Functions. Springer, New York (2007)

    Google Scholar 

  9. Gohberg, I., Krupnik, N.: Norm of the Hilbert transformation in the \(L^p\) space. Funct. Anal. Pril. 2, 91-92 (1968) (in Russian) [English transl. Funct. Anal. Appl. 2, 180–181 (1968)]

  10. Gohberg, I., Ya Krupnik, N.: On the spectrum of singular integral operators in \(L^p\) spaces. Studia Math. 31, 347–362 (1968). ((in Russian))

    MathSciNet  Google Scholar 

  11. Gohberg, I., Ya Krupnik, N.: One-Dimensional Linear Singular Integral Equations, vol. II, Operator Theory: Advances and Appl., vol. 54. Birkhäuser, Basel (1992)

  12. Grafakos, L.: Best bounds for the Hilbert transform on \(L^p(R^1)\). Math. Res. Lett. 4, 469–471 (1997)

    Article  MathSciNet  Google Scholar 

  13. Hang, F., Wang, X., Yan, X.: Sharp integral inequalities for harmonic functions. Commun. Pure Appl. Math. 61(1), 54–95 (2008)

    Article  MathSciNet  Google Scholar 

  14. Hollenbeck, B., Kalton, N.J., Verbitsky, I.E.: Best constants for some operators associated with the Fourier and Hilbert transform. Studia Math. 157, 237–278 (2003)

    Article  MathSciNet  Google Scholar 

  15. Hollenbeck, B., Verbitsky, I.E.: Best constants for the Riesz projection. J. Funct. Anal. 175, 370–392 (2000)

    Article  MathSciNet  Google Scholar 

  16. Hollenbeck, B., Verbitsky, I.E.: Best constant inequalities involving the analytic and co-analytic projection. Oper. Theory Adv. Appl. 202, 285–295 (2010)

    MathSciNet  Google Scholar 

  17. Hörmander, L.: Notions of convexity, Modern Birkhäuser Classics. Springer, Dordrecht (2007)

    Google Scholar 

  18. Iwaniec, T., Martin, G.: Riesz transforms and related singular integrals. J. Reine Angew. Math. 473, 25–57 (1996)

    MathSciNet  Google Scholar 

  19. Janakiraman, P.: Best weak-type (p, p) constants, \(1\le p\le 2\) for orthogonal harmonic functions and martingales. Ill. J. Math. 48, 909–921 (2004)

    Google Scholar 

  20. Kalaj, D., Bajrami, E.: On some Riesz and Carleman type inequalities for harmonic functions in the unit disk. Comput. Methods Funct. Theory 18(2), 295–305 (2018)

    Article  MathSciNet  Google Scholar 

  21. Kalaj, D.: On Riesz type inequalities for harmonic mappings on the unit disk. Trans. Am. Math. Soc. 372, 4031–4051 (2019)

    Article  MathSciNet  Google Scholar 

  22. Kalaj, D., Meštrović, R.: An isoperimetric type inequality for harmonic functions. J. Math. Anal. Appl. 373(2), 439–448 (2011)

    Article  MathSciNet  Google Scholar 

  23. Kayumov, I.R., Ponnusamy, S., Sairam Kaliraj, A.: Riesz–Fejer inequalities for harmonic functions. Potential Anal. 52, 105–113 (2020)

    Article  MathSciNet  Google Scholar 

  24. Koosis, P.: Introduction to \(H^p\) Spaces, 2nd edn. Cambridge Tracts in Mathematics, vol. 115. Cambridge University Press, Cambridge (1998)

  25. Krupnik, N.Ya.: On the quotient norms of singular integral operators. Mat. Issled. 10, 255–263 (1975) (in Russian)

  26. Krupnik, N.Ya., Verbitsky, I.E.: The norm of the Riesz projections. In: Linear and Complex Analysis Problem Book. Lecture Notes in Mathematics, vol. 1043, pp. 325–327. Springer, Berlin (1984)

  27. Krupnik, N.Ya., Verbitsky, I.E.: Exact constants in theorems on the boundedness of singular operators with a weight and their applications. Mat. Issled. 54, 21–35 (1980). ((in Russian))

  28. Melentijević, P.: Estimates of gradients and operator norm estimates in harmonic function theory, PhD thesis, Belgrade (2018)

  29. Melentijević, P., Božin, V.: Sharp Riesz–Fejer inequalities for harmonic Hardy spaces. Potential Anal. 54(4), 575–580 (2021)

    Article  MathSciNet  Google Scholar 

  30. Melentijević, P., Marković, M.: Best constants in inequalities involving analytic and co-analytic projections and M. Riesz theorem for various function spaces. Potential Anal. (2022). https://doi.org/10.1007/s11118-022-10021-0

  31. Newman, D.J.: The nonexistence of projection of \(L^1\) to \(H^1\). Proc. Am. Math. Soc. 12, 98–99 (1961)

    Google Scholar 

  32. Osekowski, A.: Sharp weak-type inequalities for Hilbert transform and Riesz projection. Isr. J. Math. 192, 429–448 (2012)

    Article  MathSciNet  Google Scholar 

  33. Papadopoulos, S.: A note on the M. Riesz theorem for the conjugate functions. Bul. Pol. Acad. Sci. Math. 47, 283–288 (1999)

    MathSciNet  Google Scholar 

  34. Pavlović, M.: Function Theory in the Unit Disk. DeGruyter, Berlin (2014)

    Google Scholar 

  35. Pichorides, S.K.: On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov. Stud. Math. 44, 165–179 (1972)

    Article  MathSciNet  Google Scholar 

  36. Range, R.M.: Holomorphic Functions and Integral Representations in Several Complex Variables, Graduates Texts in Mathematics, vol. 108. Springer, New York (1986)

    Google Scholar 

  37. Riesz, M.: Sur les fonctions conjugees. Math. Z. 27, 218–244 (1927)

    Article  Google Scholar 

  38. Rudin, W.: Projections on invariant subspaces. Proc. Am. Math. Soc. 13(3), 429–432 (1962)

    Article  MathSciNet  Google Scholar 

  39. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    Google Scholar 

  40. Tomaszewski, B.: Some sharp weak-type inequalities for holomorphic functions on the unit ball of \({\mathbb{C} }^n\). Proc. Am. Math. Soc. 85, 271–274 (1985)

    Google Scholar 

  41. Vasyunin, V., Volberg, A.: The Bellman function technique in harmonic analysis. Cambridge Studies in Advanced Mathematics, vol. 186 (2020)

  42. Verbitsky, I.E.: Estimate of the norm of a function in a Hardy Space in terms of the norms of its real and imaginary parts. Am. Math. Soc. Transl. 24, 11–15 (1984)

    Google Scholar 

  43. Zygmund, A.: Trigonometric Series, vol. 2. Cambridge University Press, London (1968)

    Google Scholar 

Download references

Acknowledgements

I am grateful to David Kalaj who found several mistakes in an earlier version of the paper and to an anonymous referee for useful remarks that improved the quality of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Melentijević.

Ethics declarations

Conflict of interest

The (corresponding) author states that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is partially supported by MPNTR grant 174017, Serbia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melentijević, P. Hollenbeck–Verbitsky conjecture on best constant inequalities for analytic and co-analytic projections. Math. Ann. 388, 4405–4448 (2024). https://doi.org/10.1007/s00208-023-02639-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-023-02639-1

Mathematics Subject Classification

Navigation