Abstract
Let \(F_{\infty }={{\mathbb {F}}_q}\left( \!\left( {1/T}\right) \!\right) \) be the completion of \({\mathbb {F}}_q(T)\) at 1/T. We develop a theory of Fourier expansions for harmonic cochains on the edges of the Bruhat–Tits building of \({{\,\textrm{PGL}\,}}_r(F_{\infty })\), \(r\ge 2\), generalizing an earlier construction of Gekeler for \(r=2\). We then apply this theory to study modular units on the Drinfeld symmetric space \(\Omega ^r\) over \(F_{\infty }\), and the cuspidal divisor groups of Satake compactifications of certain Drinfeld modular varieties. In particular, we obtain a higher dimensional analogue of a result of Ogg for classical modular curves \(X_0(p)\) of prime level.
Similar content being viewed by others
Data Availability
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References
Aït Amrane, Y.: Cohomology of Drinfeld symmetric spaces and harmonic cochains. Ann. Inst. Fourier (Grenoble) 56(3), 561–597 (2006)
Basson, D., Breuer, F.: On certain Drinfeld modular forms of higher rank. J. Théor. Nombres Bordeaux 29(3), 827–843 (2017)
Basson, D., Breuer, F., Pink, R.: Drinfeld modular forms of arbitrary rank. to appear in Memoirs of the American Mathematical Society
Bump, D.: Automorphic forms and representations. Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1997)
De Shalit, E.: Residues on buildings and de Rham cohomology of \(p\)-adic symmetric domains. Duke Math. J. 106(1), 123–191 (2001)
Drinfeld, V.G.: Elliptic modules. Mat. Sb. (N.S.) 94(136), 594–627 (1974)
Fresnel, J., van der Put, M.: Rigid analytic geometry and its applications, vol. 218 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, (2004)
Gekeler, E.-U.: Satake compactification of Drinfeld modular schemes. In Proceedings of the conference on \(p\)-adic analysis (Houthalen, 1987), Vrije Univ. Brussel, Brussels, pp. 71–81 (1986)
Gekeler, E.-U.: Über Drinfeldsche Modulkurven vom Hecke-Typ. Compos. Math. 57, 219–236 (1986)
Gekeler, E.-U.: Improper Eisenstein series on Bruhat–Tits trees. Manuscr. Math. 86(3), 367–391 (1995)
Gekeler, E.-U.: On the Drinfeld discriminant function. Compos. Math. 106(2), 181–202 (1997)
Gekeler, E.-U.: On Drinfeld modular forms of higher rank. J. Théor. Nombres Bordeaux 29(3), 875–902 (2017)
Gekeler, E.-U.: Invertible functions on non-archimedean symmetric spaces. Algebra Number Theory 14(9), 2481–2504 (2020)
Gekeler, E.-U.: On Drinfeld modular forms of higher rank II. J. Number Theory 232, 4–32 (2022)
Gekeler, E.-U.: On Drinfeld modular forms of higher rank IV: Modular forms with level. J. Number Theory 232, 33–74 (2022)
Gekeler, E.-U., Nonnengardt, U.: Fundamental domains of some arithmetic groups over function fields. Int. J. Math. 6(5), 689–708 (1995)
Gekeler, E.-U., van der Put, M., Reversat, M., Van Geel, J., (eds.): Drinfeld modules, modular schemes and applications World Scientific Publishing Co., Inc., River Edge, NJ (1997)
Goldman, O., Iwahori, N.: The space of \(\mathfrak{p} \)-adic norms. Acta Math. 109, 137–177 (1963)
Goss, D.: Basic structures of function field arithmetic, vol. 35 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, (1996)
Häberli, S.: Satake compactification of analytic Drinfeld modular varieties. Thesis (Ph.D.)–ETH Zurich (2018)
Hartshorne, R.: Algebraic geometry. Springer-Verlag, New York-Heidelberg, Graduate Texts in Mathematics, No. 52 (1977)
Jacquet, H., Shalika, J.A.: On Euler products and the classification of automorphic representations. I. Am. J. Math. 103(3), 499–558 (1981)
Kapranov, M.M.: Cuspidal divisors on the modular varieties of elliptic modules. Izv. Akad. Nauk SSSR Ser. Mat. 513(568–583), 688 (1987)
Liu, Q.: Algebraic geometry and arithmetic curves, vol. 6 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, (2002). Translated from the French by Reinie Erné, Oxford Science Publications
Margulis, G.A.: Discrete subgroups of semisimple Lie groups, vol. 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, (1991)
Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math., 47(1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport
Ogg, A.P.: Diophantine equations and modular forms. Bull. Am. Math. Soc. 81, 14–27 (1975)
Pál, A.: On the torsion of the Mordell-Weil group of the Jacobian of Drinfeld modular curves. Doc. Math. 10, 131–198 (2005)
Pink, R.: Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank. Manuscr. Math. 1403–4, 333–361 (2013)
Schneider, P., Stuhler, U.: The cohomology of \(p\)-adic symmetric spaces. Invent. Math. 105(1), 47–122 (1991)
Serre, J.-P.: Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, (2003). Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation
van der Put, M.: Discrete groups, Mumford curves and theta functions. Ann. Fac. Sci. Toulouse Math. (6) 1(3), 399–438 (1992)
Wei, F.-T.: On Kronecker terms over global function fields. Invent. Math. 220(3), 847–907 (2020)
Weil, A.: Dirichlet series and automorphic forms. Lecture Notes in Mathematics, vol. 189. Springer, Berlin (1971)
Acknowledgements
Part of this work was carried out while the first author was visiting the National Center for Theoretical Sciences in Hsinchu. He thanks the institute for its hospitality and excellent working conditions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The first author was supported in part by a Collaboration Grant for Mathematicians from the Simons Foundation, Award No. 637364. The second author was supported by the National Science and Technology Council (Grant nos. 107-2628-M-007 -004- MY4 and 109-2115-M-007 -017 -MY5) and the National Center for Theoretical Sciences.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Papikian, M., Wei, FT. Drinfeld discriminant function and Fourier expansion of harmonic cochains. Math. Ann. 388, 1379–1435 (2024). https://doi.org/10.1007/s00208-022-02549-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00208-022-02549-8