Skip to main content
Log in

Drinfeld discriminant function and Fourier expansion of harmonic cochains

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(F_{\infty }={{\mathbb {F}}_q}\left( \!\left( {1/T}\right) \!\right) \) be the completion of \({\mathbb {F}}_q(T)\) at 1/T. We develop a theory of Fourier expansions for harmonic cochains on the edges of the Bruhat–Tits building of \({{\,\textrm{PGL}\,}}_r(F_{\infty })\), \(r\ge 2\), generalizing an earlier construction of Gekeler for \(r=2\). We then apply this theory to study modular units on the Drinfeld symmetric space \(\Omega ^r\) over \(F_{\infty }\), and the cuspidal divisor groups of Satake compactifications of certain Drinfeld modular varieties. In particular, we obtain a higher dimensional analogue of a result of Ogg for classical modular curves \(X_0(p)\) of prime level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aït Amrane, Y.: Cohomology of Drinfeld symmetric spaces and harmonic cochains. Ann. Inst. Fourier (Grenoble) 56(3), 561–597 (2006)

    Article  MathSciNet  Google Scholar 

  2. Basson, D., Breuer, F.: On certain Drinfeld modular forms of higher rank. J. Théor. Nombres Bordeaux 29(3), 827–843 (2017)

    Article  MathSciNet  Google Scholar 

  3. Basson, D., Breuer, F., Pink, R.: Drinfeld modular forms of arbitrary rank. to appear in Memoirs of the American Mathematical Society

  4. Bump, D.: Automorphic forms and representations. Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  5. De Shalit, E.: Residues on buildings and de Rham cohomology of \(p\)-adic symmetric domains. Duke Math. J. 106(1), 123–191 (2001)

    Article  MathSciNet  Google Scholar 

  6. Drinfeld, V.G.: Elliptic modules. Mat. Sb. (N.S.) 94(136), 594–627 (1974)

    MathSciNet  Google Scholar 

  7. Fresnel, J., van der Put, M.: Rigid analytic geometry and its applications, vol. 218 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, (2004)

  8. Gekeler, E.-U.: Satake compactification of Drinfeld modular schemes. In Proceedings of the conference on \(p\)-adic analysis (Houthalen, 1987), Vrije Univ. Brussel, Brussels, pp. 71–81 (1986)

  9. Gekeler, E.-U.: Über Drinfeldsche Modulkurven vom Hecke-Typ. Compos. Math. 57, 219–236 (1986)

    Google Scholar 

  10. Gekeler, E.-U.: Improper Eisenstein series on Bruhat–Tits trees. Manuscr. Math. 86(3), 367–391 (1995)

    Article  MathSciNet  Google Scholar 

  11. Gekeler, E.-U.: On the Drinfeld discriminant function. Compos. Math. 106(2), 181–202 (1997)

    Article  MathSciNet  Google Scholar 

  12. Gekeler, E.-U.: On Drinfeld modular forms of higher rank. J. Théor. Nombres Bordeaux 29(3), 875–902 (2017)

    Article  MathSciNet  Google Scholar 

  13. Gekeler, E.-U.: Invertible functions on non-archimedean symmetric spaces. Algebra Number Theory 14(9), 2481–2504 (2020)

    Article  MathSciNet  Google Scholar 

  14. Gekeler, E.-U.: On Drinfeld modular forms of higher rank II. J. Number Theory 232, 4–32 (2022)

    Article  MathSciNet  Google Scholar 

  15. Gekeler, E.-U.: On Drinfeld modular forms of higher rank IV: Modular forms with level. J. Number Theory 232, 33–74 (2022)

    Article  MathSciNet  Google Scholar 

  16. Gekeler, E.-U., Nonnengardt, U.: Fundamental domains of some arithmetic groups over function fields. Int. J. Math. 6(5), 689–708 (1995)

    Article  MathSciNet  Google Scholar 

  17. Gekeler, E.-U., van der Put, M., Reversat, M., Van Geel, J., (eds.): Drinfeld modules, modular schemes and applications World Scientific Publishing Co., Inc., River Edge, NJ (1997)

  18. Goldman, O., Iwahori, N.: The space of \(\mathfrak{p} \)-adic norms. Acta Math. 109, 137–177 (1963)

    Article  MathSciNet  Google Scholar 

  19. Goss, D.: Basic structures of function field arithmetic, vol. 35 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, (1996)

  20. Häberli, S.: Satake compactification of analytic Drinfeld modular varieties. Thesis (Ph.D.)–ETH Zurich (2018)

  21. Hartshorne, R.: Algebraic geometry. Springer-Verlag, New York-Heidelberg, Graduate Texts in Mathematics, No. 52 (1977)

  22. Jacquet, H., Shalika, J.A.: On Euler products and the classification of automorphic representations. I. Am. J. Math. 103(3), 499–558 (1981)

    Article  MathSciNet  Google Scholar 

  23. Kapranov, M.M.: Cuspidal divisors on the modular varieties of elliptic modules. Izv. Akad. Nauk SSSR Ser. Mat. 513(568–583), 688 (1987)

    Google Scholar 

  24. Liu, Q.: Algebraic geometry and arithmetic curves, vol. 6 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, (2002). Translated from the French by Reinie Erné, Oxford Science Publications

  25. Margulis, G.A.: Discrete subgroups of semisimple Lie groups, vol. 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, (1991)

  26. Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math., 47(1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport

  27. Ogg, A.P.: Diophantine equations and modular forms. Bull. Am. Math. Soc. 81, 14–27 (1975)

    Article  MathSciNet  Google Scholar 

  28. Pál, A.: On the torsion of the Mordell-Weil group of the Jacobian of Drinfeld modular curves. Doc. Math. 10, 131–198 (2005)

    Article  MathSciNet  Google Scholar 

  29. Pink, R.: Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank. Manuscr. Math. 1403–4, 333–361 (2013)

    Article  MathSciNet  Google Scholar 

  30. Schneider, P., Stuhler, U.: The cohomology of \(p\)-adic symmetric spaces. Invent. Math. 105(1), 47–122 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  31. Serre, J.-P.: Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, (2003). Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation

  32. van der Put, M.: Discrete groups, Mumford curves and theta functions. Ann. Fac. Sci. Toulouse Math. (6) 1(3), 399–438 (1992)

    Article  MathSciNet  Google Scholar 

  33. Wei, F.-T.: On Kronecker terms over global function fields. Invent. Math. 220(3), 847–907 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  34. Weil, A.: Dirichlet series and automorphic forms. Lecture Notes in Mathematics, vol. 189. Springer, Berlin (1971)

    Google Scholar 

Download references

Acknowledgements

Part of this work was carried out while the first author was visiting the National Center for Theoretical Sciences in Hsinchu. He thanks the institute for its hospitality and excellent working conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Tsun Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported in part by a Collaboration Grant for Mathematicians from the Simons Foundation, Award No. 637364. The second author was supported by the National Science and Technology Council (Grant nos. 107-2628-M-007 -004- MY4 and 109-2115-M-007 -017 -MY5) and the National Center for Theoretical Sciences.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papikian, M., Wei, FT. Drinfeld discriminant function and Fourier expansion of harmonic cochains. Math. Ann. 388, 1379–1435 (2024). https://doi.org/10.1007/s00208-022-02549-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02549-8

Mathematics Subject Classification

Navigation