Skip to main content
Log in

Construction of minimal annuli in \(\widetilde{\textrm{PSL}}_2({\mathbb {R}},\tau )\) via a variational method

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We construct complete, embedded minimal annuli asymptotic to vertical planes in the Riemannian 3-manifold \(\widetilde{\textrm{PSL}}_2({\mathbb {R}},\tau )\). The boundary of these annuli consists of 4 vertical lines at infinity. They are constructed by taking the limit of a sequence of compact minimal annuli. The compactness is obtained from an estimate of curvature which uses foliations by minimal surfaces. This estimate is independent of the index of the surface. We also prove the existence of a one-periodic family of Riemann’s type examples. The difficulty of the construction comes from the lack of symmetry of the ambient space \(\widetilde{\textrm{PSL}}_2({\mathbb {R}},\tau )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

  2. Anderson, M.T.: Curvature estimates for minimal surfaces in \(3\)-manifolds. Ann. Sci. École Norm. Sup. (4) 18(1), 89–105 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Colding, T.H., Minicozzi, W.P.: II. A Course in Minimal Surfaces, Graduate Studies in Mathematics, vol. 121. American Mathematical Society, Providence (2011)

  4. Collin, P., Rosenberg, H.: Construction of harmonic diffeomorphisms and minimal graphs. Ann. Math. (2) 172(3), 1879–1906 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daniel, B.: Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math. Helv. 82(1), 87–131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daniel, B., Hauswirth, L.: Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group. Proc. Lond. Math. Soc. 3(98), 445–470 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Desmonts, C.: Constructions of periodic minimal surfaces and minimal annuli in \({\rm Sol}_3\). Pac. J. Math. 276(1), 143–166 (2015)

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  9. Hauswirth, L., Sa Earp, R., Toubiana, E.: Associate and conjugate minimal immersions in \(M \times {\mathbb{R}}\). Tohoku Math. J. (2) 60(2), 267-286 (2008)

  10. Hoffman, D., Karcher, H.: Complete embedded minimal surfaces of finite total curvature. In: Geometry, V, Encyclopaedia Math. Sci., vol. 90, pp. 5–93. Springer, Berlin (1997)

  11. Hoffman, D., Meeks, W.H., III.: The strong halfspace theorem for minimal surfaces. Invent. Math. 101(2), 373–377 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jenkins, H., Serrin, J.: Variational problems of minimal surface type. II. Boundary value problems for the minimal surface equation. Arch. Rational Mech. Anal. 21, 321–342 (1966)

  13. Jost, J.: Conformal mappings and the Plateau-Douglas problem in Riemannian manifolds. J. Reine Angew. Math. 359, 37–54 (1985)

    MathSciNet  MATH  Google Scholar 

  14. Martin, F., Mazzeo, R., Rodriguez, M.M.: Minimal surfaces with positive genus and finite total curvature in \({\mathbb{H} }^2\times {\mathbb{R} }\). Geom. Topol. 18, 141–177 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mazet, L., Rodríguez, M.M., Rosenberg, H.: The Dirichlet problem for the minimal surface equation, with possible infinite boundary data, over domains in a Riemannian surface. Proc. Lond. Math. Soc. (3) 102(6), 985–1023 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meeks, W.H., III., White, B.: Minimal surfaces bounded by convex curves in parallel planes. Comment. Math. Helv. 66(2), 263–278 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meeks, W.H., III., Yau, S.T.: The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma. Topology 21(4), 409–442 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Melo, S.: Minimal graphs in \(\widetilde{{\rm PSL}_2(\mathbb{R} )}\) over unbounded domains. Bull. Braz. Math. Soc. (N.S.) 45(1), 96–116 (2014)

    Google Scholar 

  19. Mo, X., Osserman, R.: On the Gauss map and total curvature of complete minimal surfaces and an extension of Fujimoto’s theorem. J. Differ. Geom. 31(2), 343–355 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morabito, F., Rodríguez, M.M.: Saddle towers and minimal \(k\)-noids in \(\mathbb{H} ^2\times \mathbb{R} \). J. Inst. Math. Jussieu 11(2), 333–349 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nelli, B., Rosenberg, H.: Minimal surfaces in \({\mathbb{H} }^2\times \mathbb{R} \). Bull. Braz. Math. Soc. (N.S.) 33(2), 263–292 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peñafiel, C.: Invariant surfaces in \({\widetilde{PSL}}_2(\mathbb{R},\tau )\) and applications. Bull. Braz. Math. Soc. (N.S.) 43(4), 545–578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Petersen, P.: Riemannian Geometry, Graduate Texts in Mathematics, vol. 171, 2nd edn. Springer, New York (2006)

  24. Pyo, J.: New complete embedded minimal surfaces in \(\mathbb{H} ^2\times \mathbb{R} \). Ann. Global Anal. Geom. 40(2), 167–176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schoen, R.: Estimates for stable minimal surfaces in three-dimensional manifolds. In: Seminar on Minimal Submanifolds, Ann. of Math. Stud., vol. 103, pp. 111–126. Princeton Univ. Press, Princeton (1983)

  26. Scott, P.: The geometries of \(3\)-manifolds. Bull. Lond. Math. Soc. 15(5), 401–487 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. White, B.: Curvature estimates and compactness theorems in \(3\)-manifolds for surfaces that are stationary for parametric elliptic functionals. Invent. Math. 88(2), 243–256 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. White, B.: The space of \(m\)-dimensional surfaces that are stationary for a parametric elliptic functional. Indiana Univ. Math. J. 36(3), 567–602 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. White, B.: New applications of mapping degrees to minimal surface theory. J. Differ. Geom. 29(1), 143–162 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Younes, R.: Minimal surfaces in \(\widetilde{PSL_2(\mathbb{R} )}\). Ill. J. Math. 54(2), 671–712 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Hauswirth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collin, P., Hauswirth, L. & Nguyen, M.H. Construction of minimal annuli in \(\widetilde{\textrm{PSL}}_2({\mathbb {R}},\tau )\) via a variational method. Math. Ann. 387, 2105–2155 (2023). https://doi.org/10.1007/s00208-022-02502-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02502-9

Navigation