Skip to main content
Log in

Spatial decay of multi-solitons of the generalized Korteweg-de Vries and nonlinear Schrödinger equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study pointwise spatial decay of multi-solitons of the generalized Korteweg-de Vries equations. We obtain that, uniformly in time, these solutions and their derivatives decay exponentially in space on the left of and in the solitons region, and prove rapid decay on the right of the solitons. We also prove the corresponding result for multi-solitons of the nonlinear Schrödinger equations, that is, exponential decay in the solitons region and rapid decay outside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. We denote |x| the canonical euclidian norm of \(x \in \mathbb {R}^d\) (or the modulus in \(\mathbb {C}\)), and \(|\sigma |\) the length of the multi-index \(\sigma \in \mathbb {N}^d\); the context makes it unambiguous.

  2. We thank Y. Martel for pointing to us this reference, upon completion of this work.

  3. If \(s=3\) or 4, a term which is cubic in \(\partial _x^{s-1} z\), of the type

    $$\begin{aligned} \int (\partial _x^{s-1} z)^3 P(R_j, z, \partial _x z)\, dx \end{aligned}$$

    can occur, where P is some function (but there are no terms with higher power of \(\partial _x^{s-1} z\)). Via the Gagliardo-Nirenberg inequality, it can be bounded by

    $$\begin{aligned} \left( \Vert z \Vert _{H^s}^{1/6} \Vert z \Vert _{H^{s-1}}^{5/6} \right) ^3 \Vert P(R_j,z,\partial _x z) \Vert _{L^\infty } \lesssim C(1+\Vert z \Vert _{H^2})^{p-2} e^{-5\theta /2 t} \Vert z \Vert _{H^s}^{1/2}, \end{aligned}$$

    the point being that the decay rate in \(\theta \) is greater than 2: one can then complete the estimates as written here for \(s \geqslant 5\).

References

  1. Berestycki, Henri, Lions, Pierre-Louis.: Non linear scalar field equations, I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    Article  MATH  Google Scholar 

  2. Chen, Gong, Liu, Jiaqi: Soliton resolution for the focusing modified KdV equation. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 38(6), 2005–2071 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Combet, Vianney: Multi-soliton solutions for the supercritical gKdV equations. Comm. Partial Differ. Equ. 36(3), 380–419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Côte, Raphaël, Friederich, Xavier: On smoothness and uniqueness of multi-solitons of the non-linear schrödinger equations. Commun. Partial Differ. Equ. 46(12), 2325–2385 (2021)

    Article  MATH  Google Scholar 

  5. Côte, Raphaël, Martel, Yvan, Merle, Frank: Construction of multi-soliton solutions for the \(L^2\)-supercritical gKdV and NLS equations. Rev. Mat. Iberoam. 27(1), 273–302 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eckhaus, Wiktor, Schuur, Peter C.: The emergence of solutions for the generalized Korteweg-de Vries equation from arbitrary initial conditions. Math. Meth. Appl. Sci. 5, 97–116 (1983)

    Article  MATH  Google Scholar 

  7. Friederich, X.: Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 38(5), 1525–1552 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friederich, X.: Propriétés qualitatives des multi-solitons. Phd thesis, University of Strasbourg (2021)

  9. Gardner, Clifford S., Greene, John M., Kruskal, Martin D., Miura, Robert M.: Korteweg-de Vries equation and generalizations. VI. Methods for exact solutions. Commun. Pure Appl. Math. 27(1), 97–133 (1974)

    Article  MATH  Google Scholar 

  10. Hirota, Ryogo: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  MATH  Google Scholar 

  11. Isaza, Pedro, Linares, Felipe, Ponce, Gustavo: On decay properties of solutions of the \(k\)-generalized KdV equation. Commun. Mat. Phys. 324(7), 129–146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Isaza, Pedro, Linares, Felipe, Ponce, Gustavo: On the propagation of regularity and decay of solutions to the \(k\)-generalized Korteweg-de Vries equation. Commun. Partial Differ. Equ. 40(7), 1336–1364 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kato, Tosio: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Stud. Appl. Math. Adv. Math. Supplementary Stud. 18, 93–128 (1983)

    MathSciNet  Google Scholar 

  14. Lamb, G.L.: Elements of Soliton Theory. Wiley, New York (1980)

    MATH  Google Scholar 

  15. Laurent, Céline., Martel, Yvan: Smoothness and exponential decay of \(L^2\)-compact solutions of the generalized KdV equations. Commun. Partial Differ. Equ. 29, 157–171 (2005)

    Article  MATH  Google Scholar 

  16. Martel, Yvan: Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. Am. J. Math. 127(5), 1103–1140 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martel, Yvan, Merle, Frank: A Liouville theorem for the critical generalized Korteweg-de Vries equation. J. Math. Pures Appl. 79, 339–425 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Martel, Yvan, Merle, Frank: Asymptotic stability of solitons for subcritical gKdV equations. Arch. Ration. Mech. Anal. 157, 219–254 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martel, Yvan, Merle, Frank: Multisolitary waves for nonlinear Schrödinger equations. Annales de l’Institut Henri Poincaré, C Analyse non linéaire 23, 849–864 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Martel, Yvan, Merle, Frank: Description of two soliton collision for the quartic gKdV equation. Ann. Math. 174(2), 757–857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Martel, Yvan, Merle, Frank: Inelastic interaction of nearly equal solitons for the quartic gKdV equation. Invent. Math. 183(3), 563–648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martel, Yvan, Merle, Frank: On the nonexistence of pure multi-solitons for the quartic gKdV equation. Int. Math. Res. Not. IMRN 3, 688–739 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Merle, Frank: Construction of solutions with exactly \(k\) blow-up points for the Schrödinger equation with critical nonlinearity. Commun. Math. Phys. 129, 223–240 (1990)

    Article  MATH  Google Scholar 

  24. Miura, Robert M.: The Korteweg-de Vries equation: a survey of results. SIAM Rev. 18(3), 412–459 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Muñoz, Claudio: On the inelastic 2-soliton collision for gKdV equations with general nonlinearity. Int. Math. Res. Notices 9, 1624–1719 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Muñoz, Claudio: Soliton dynamics for generalized KdV equations in a slowly varying medium. Anal. PDEs 4(4), 573–638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schuur, Peter C.: Asymptotic Analysis of Solitons Problems. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Friederich.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Appendix

A. Appendix

1.1 A.1 Growth of the \(H^{s}\) norms of the 1-D solitons

The purpose of this appendix is to make the constants more explicit as stated in Section 3. We restrict to the space dimension 1 and monomial nonlinearity.

Proposition A.1

For all \(\mu >\sqrt{p}\), there exists \(s_0\) such that for all \(s\geqslant s_0\),

$$\begin{aligned} \Vert Q\Vert _{H^s}\leqslant 2^{\mu ^s}. \end{aligned}$$
(A.1)

Proof

Differentiating the fundamental equation satisfied by Q, that is \(Q''+Q^p=Q\), we obtain the following induction formula:

$$\begin{aligned} \forall s\in \mathbb {N},\quad Q^{(s+2)}=Q^{(s)}-\sum _{i_1+\dots +i_p=s}\genfrac(){0.0pt}0{s}{i_1,\dots ,i_p}Q^{(i_1)}\dots Q^{(i_p)}. \end{aligned}$$

Let us observe that for \(i_1,\dots ,i_p\in \mathbb {N}\) such that \(i_1+\dots +i_p=s\),

  • if there exists \(j\in \{1,\dots ,p\}\) such that \(i_j=s\), then

    $$\begin{aligned} \int _\mathbb {R}\left( Q^{(i_1)}\dots Q^{(i_p)}\right) ^2\,dx&=\int _\mathbb {R}\left( Q^{(s)}\right) ^2 Q^{2(p-1)}\,dx \\&\leqslant \Vert Q\Vert _{L^\infty }^{2(p-1)}\int _\mathbb {R}\left( Q^{(s)}\right) ^2 \,dx \leqslant C\Vert Q\Vert _{H^1}^{2(p-1)}\Vert Q\Vert _{H^s}^2 \end{aligned}$$

    (C being a constant depending only on p);

  • if for all \(j\in \{1,\dots ,p\}\) such that \(i_j\leqslant s-1\), then

    $$\begin{aligned} \int _\mathbb {R}\left( Q^{(i_1)}\dots Q^{(i_p)}\right) ^2\,dx&\leqslant \prod _{k=2}^p\Vert Q^{(i_k)}\Vert ^2_{L^\infty }\int _\mathbb {R}\left( Q^{(i_1)}\right) ^2 \,dx\\&\leqslant C\prod _{k=2}^p\Vert Q\Vert _{H^{i_{k}+1}}^{2}\Vert Q\Vert _{H^{i_1}}^2 \leqslant C\Vert Q\Vert _{H^s}^{2(p-1)}\Vert Q\Vert _{H^{s-1}}^2, \end{aligned}$$

    (C being again a constant depending only on p, which can change from one line to the other).

Thus for \(s\in \mathbb {N}^*\),

$$\begin{aligned} \Vert Q^{(s+2)}\Vert _{L^2}\leqslant C\left( \Vert Q^{(s)}\Vert _{L^2}+p^s\Vert Q\Vert _{H^s}^p\right) , \end{aligned}$$

which implies

$$\begin{aligned} \Vert Q\Vert _{H^{s+2}}\leqslant Cp^s\Vert Q\Vert _{H^s}^p, \end{aligned}$$

with a constant C depending only on p.

We finally obtain

$$\begin{aligned} \Vert Q\Vert _{H^s}&\leqslant C^{\frac{p^{\lfloor \frac{s}{2}\rfloor }-1}{p-1}}p^{p^{\lfloor \frac{s}{2}\rfloor } s}\Vert Q\Vert _{H^1} \leqslant 2^{\mu ^s}, \end{aligned}$$

with \(\mu >\sqrt{p}\) and s sufficiently large. \(\square \)

Remark 4.5

As a corollary of Proposition A.1, we also obtain the existence of a constant C depending on p and the soliton parameters such that for all \(s\in \mathbb {N}\),

$$\begin{aligned} \left\| \left( \sum _{j=1}^NR_j(t)\right) ^p-\sum _{j=1}^NR_j(t)^p\right\| _{H^s}\leqslant Cp^s\max _{j=1,\dots ,N}\Vert R_j\Vert _{H^s}^pe^{-2\theta t}. \end{aligned}$$
(A.2)

1.2 A.2 Proof of estimate (3.3)

The goal is here to make explicit the constants appearing in the computations done by Martel [16, Section 3.4] in the proof of smoothness of the multi-solitons.

We thus repeat the arguments developed by Martel (presented slightly differently), keeping track of the growth of the constant \(\lambda _s\) (with respect to s) such that

$$\begin{aligned} \forall t\geqslant T_0, \quad \Vert z(t)\Vert _{H^s}\leqslant \lambda _se^{-\theta t}. \end{aligned}$$

Proof

We consider regularity indices \(s\geqslant 5\), as that case makes the argument easier: the point being that the exponential decay rate \(\theta \) does not change when we go from the estimation of \(\Vert z\Vert _{H^{s-1}}\) to that of \(\Vert z\Vert _{H^s}\); there is a loss for \(s=2\) (treated in detail in [16]), which can be avoided for \(s=3,4\) using an extra argument, see the footnote below in the proof.

The starting point is to study the variations of

$$\begin{aligned} \frac{d}{dt}\int _{\mathbb {R}}\left( \partial _x^{s}z\right) ^2\,dx=2\int _\mathbb {R}\partial _x^s\left( \left( z+R\right) ^p-\sum _{j=1}^NR_j^p\right) \partial _x^{s+1}z\,dx. \end{aligned}$$

Thus, the terms which have to be controlled are the source term (involving z only linearly)

$$\begin{aligned} 2\int _{\mathbb {R}}\partial _x^{s+1}\left( R^p-\sum _{j=1}^NR_j^p\right) \partial _x^sz\,dx. \end{aligned}$$

and

$$\begin{aligned}&-2\int _{\mathbb {R}}\partial _x^{s+1}\left( \sum _{k=1}^p\genfrac(){0.0pt}0{p}{k}z^kR^{p-k}\right) \partial _x^sz\,dx= -2\sum _{k=1}^p\genfrac(){0.0pt}0{p}{k}\sum _{i_1+\dots +i_p=s+1}\genfrac(){0.0pt}0{s+1}{i_1,\dots ,i_p}I_{k,i_1,\dots ,i_p},\\&\qquad \text {where} \quad I_{k,i_1,\dots ,i_p}=\int _\mathbb {R}\partial _x^{i_1}z\dots \partial _x^{i_k}z\partial _x^{i_{k+1}}R\dots \partial _x^{i_p}R\partial _x^sz\,dx. \end{aligned}$$

(i) For \(k=1\), integrating by parts, we have

$$\begin{aligned}&\sum _{i_1+\dots +i_p=s+1}\genfrac(){0.0pt}0{s+1}{i_1,\dots ,i_p}\int _\mathbb {R}\partial _x^{i_1}z\partial _x^{i_2}R\dots \partial _x^{i_p}R\partial _x^sz\,dx \nonumber \\&\quad \quad = \int _\mathbb {R}\partial _x^{s+1}zR^{p-1}\partial _x^sz\,dx+(s+1)(p-1)\int _\mathbb {R}\partial _x^sz\partial _xRR^{p-2}\partial _x^sz\,dx \nonumber \\&\quad \qquad +\sum _{\underset{\forall j,i_j\leqslant s-1}{i_1+\dots +i_p=s+1}}\int _\mathbb {R}\partial _x^{i_1}z\partial _x^{i_2}R\dots \partial _x^{i_p}R\partial _x^sz\,dx \nonumber \\&\quad \quad = \frac{2s+1}{2}\int _\mathbb {R}\left( \partial _x^sz\right) ^2\partial _x(R^{p-1})\,dx+\sum _{\underset{\forall j,i_j\leqslant s-1}{i_1+\dots +i_p=s+1}}\int _\mathbb {R}\partial _x^{i_1}z\partial _x^{i_2}R\dots \partial _x^{i_p}R\partial _x^sz\,dx. \end{aligned}$$
(A.3)

The first integral

$$\begin{aligned} \frac{2s+1}{2} \int _\mathbb {R}\left( \partial _x^sz\right) ^2\partial _x(R^{p-1})\,dx \end{aligned}$$
(A.4)

can not be bounded directly in a suitable way. The key idea in [16] is to add a lower order term

$$\begin{aligned} \frac{2s+1}{3}p\int _{\mathbb {R}}\left( \partial _x^{s-1}z\right) ^2R^{p-1}\,dx \end{aligned}$$

whose variation at leading order will precisely cancel (A.4). Thus we are lead to consider

$$\begin{aligned} F_s(t){:}{=}\int _{\mathbb {R}}\left( \partial _x^{s}z\right) ^2\,dx-\frac{2s+1}{3}p\int _{\mathbb {R}}\left( \partial _x^{s-1}z\right) ^2R^{p-1}\,dx. \end{aligned}$$

Going back to (A.3), we bound

$$\begin{aligned} \left| \sum _{\underset{\forall j,i_j\leqslant s-1}{i_1+\dots +i_p=s+1}}\int _\mathbb {R}\partial _x^{i_1}z\partial _x^{i_2}R\dots \partial _x^{i_p}R\partial _x^sz\,dx\right| \leqslant Cp^{s+1}\Vert z\Vert _{H^{s-1}}^2\Vert R\Vert _{H^s}^{p-1}. \end{aligned}$$
(A.5)

(ii) Let us now consider the case where \(2\leqslant k\leqslant p\). If there exists \(j\in \left\{ 1,\dots ,k\right\} \) such that \(i_j=s+1\), then integrating by parts,

$$\begin{aligned} | I_{k,i_1,\dots ,i_p}|&= \frac{1}{2} | \int _\mathbb {R}\left( \partial _x^sz\right) ^2\partial _x\left( z^{k-1}R^{p-k}\right) \,dx | \nonumber \\&\leqslant \frac{1}{2}\left\| \partial _x\left( R^{p-k}z^{k-1}\right) \right\| _{L^\infty }\Vert z\Vert _{H^s}^2 \leqslant \frac{1}{2}\Vert R\Vert _{H^2}^{p-k}\Vert z\Vert _{H^2}^{k-1}\Vert z\Vert _{H^s}^2. \end{aligned}$$
(A.6)

If there exists \(j\in \left\{ 1,\dots ,k\right\} \) such that \(i_j=s\), then

$$\begin{aligned} |I_{k,i_1,\dots ,i_p}|\leqslant C\Vert z\Vert _{H^2}^{k-1}\Vert R\Vert _{H^2}^{p-k}\int _{\mathbb {R}}\left( \partial _x^sz\right) ^2\,dx. \end{aligned}$$
(A.7)

If there exists \(j\in \left\{ 1,\dots ,k\right\} \) such that \(i_j=s-1\), then for all \(j'\in \{1,\dots ,k\}\) such that \(j'\ne j\), \(i_{j'}\leqslant \sum _{l=1}^pi_l-s+1\leqslant 2\leqslant s-3\) (by the choice of \(s\geqslant 5\))Footnote 3. Hence, integrating by parts,

$$\begin{aligned} |I_{k,i_1,\dots ,i_p}|&= \left| -\frac{1}{2}\int _\mathbb {R}\left( \partial _x^{s-1}z\right) ^2\partial _x\left( \partial _x^{i'_1}z\dots \partial _x^{i'_{k-1}}z\partial _x^{i_{k+1}}R\dots \partial _x^{i_p}R\right) \,dx \right| \nonumber \\&\leqslant \frac{1}{2}\Vert z\Vert _{H^{s-1}}^2\left\| \partial _x\left( \partial _x^{i'_1}z\dots \partial _x^{i'_{k-1}}z\partial _x^{i_{k+1}}R\dots \partial _x^{i_p}R\right) \right\| _{L^\infty } \nonumber \\&\leqslant C\Vert z\Vert _{H^{s-1}}^{k+1}\Vert R\Vert _{H^{s+1}}^{p-k}, \end{aligned}$$
(A.8)

where C is a universal constant depending only on p.

In the other cases, \(i_1,\dots ,i_{k}\leqslant s-2\) and so

$$\begin{aligned} |I_{k,i_1,\dots ,i_p}|&\leqslant \, \left| -\int _\mathbb {R}\partial _x^{s-1}z\partial _x\left( \partial _x^{i_1}z\dots \partial _x^{i_k}z\partial _x^{i_{k+1}}R\dots \partial _x^{i_p}R\right) \,dx\right| \leqslant \Vert z\Vert _{H^{s-1}}^{k+1}\Vert R\Vert _{H^{s-1}}^{p-k}. \end{aligned}$$
(A.9)

(iii) For the source term, by integration by parts,

$$\begin{aligned} \left| 2\int _{\mathbb {R}}\partial _x^{s+1}\left( R^p-\sum _{j=1}^NR_j^p\right) \partial _x^sz\,dx\right|&\leqslant C\Vert z\Vert _{H^{s-1}}\left\| R^p-\sum _{j=1}^NR_j^p\right\| _{H^{s+2}}\\&\leqslant C\lambda _{s-1}e^{-\theta t}\left\| R^p-\sum _{j=1}^NR_j^p\right\| _{H^{s+2}}. \end{aligned}$$

(iv) When computing the time differential of \(\displaystyle \int _{\mathbb {R}}\left( \partial _x^{s-1}z\right) ^2R^{p-1}\,dx\), as mentioned (and by construction), one term cancels (A.4) and the others are bounded as in (i) and (ii).

Gathering the bounds (A.5), (A.6), (A.7), (A.8), (A.9), it results that

$$\begin{aligned} \left| \frac{d}{dt}F_s(t)\right| \leqslant&\, C\lambda _{s-1}e^{-\theta t}\left\| R^p-\sum _{j=1}^NR_j^p\right\| _{H^{s+1}} +C\sum _{k=2}^p\genfrac(){0.0pt}0{p}{k}\Vert z\Vert _{H^s}^2p^{s+1}\Vert z\Vert _{H^2}^{k-1}\Vert R\Vert _{H^s}^{p-k} \nonumber \\&\quad +C\sum _{k=2}^p\genfrac(){0.0pt}0{p}{k}p^{s+1}\Vert z\Vert _{H^{s-1}}^{k+1}\Vert R\Vert _{H^s}^{p-k} \nonumber \\&\leqslant C\lambda _{s-1}e^{-\theta t}p^{s+2}2^{\mu ^{s+2}p}e^{-2\theta t}+C\Vert z\Vert _{H^s}^2e^{-2\theta t}p^{s+1}2^p2^{\mu ^s(p-2)} \nonumber \\&\quad +Ce^{-3\theta t}p^{s+1}2^p2^{\mu ^s(p-2)}\lambda _{s-1}^{p+1} \nonumber \\&\leqslant C\left( p^s2^{\mu ^sp}e^{-2\theta t}\Vert z\Vert _{H^s}^2+p^s2^{\mu ^sp}\lambda _{s-1}^{p+1}e^{-3\theta t}\right) . \end{aligned}$$
(A.10)

Moreover, we have by definition of \(F_s\),

$$\begin{aligned} \int _{\mathbb {R}}\left( \partial _x^{s}z\right) ^2\,dx&\leqslant |F_s|+Cs\Vert R\Vert _{H^2}^{p-1}\Vert \partial _x^{s-1}z\Vert _{L^2}^2 \leqslant |F_s|+Cs\lambda _{s-1}^2e^{-2\theta t}. \end{aligned}$$

Hence,

$$\begin{aligned} \left| \frac{d}{dt}F_s(t)\right| \leqslant Cp^s2^{\mu ^sp}e^{-2\theta t}\left( |F_s(t)|+s\lambda _{s-1}^2e^{-2\theta t}\right) +Cp^s2^{\mu ^sp}\lambda _{s-1}^{p+1}e^{-3\theta t}. \end{aligned}$$

By integration we finally obtain

$$\begin{aligned} |F_s(t)|\leqslant Cp^{s}2^{\mu ^sp}\lambda _{s-1}^{p+1}e^{-2\theta t} \end{aligned}$$

and thus

$$\begin{aligned} \Vert z\Vert _{H^{s}}^2\leqslant Cp^{s}2^{\mu ^sp}\lambda _{s-1}^{p+1}e^{-2\theta t}. \end{aligned}$$

We can therefore take

$$\begin{aligned} \lambda _{s}\leqslant Cp^{\frac{s}{2}}2^{\frac{p}{2}\mu ^s}\lambda _{s-1}^{\frac{p+1}{2}}, \end{aligned}$$
(A.11)

which yields via an induction

$$\begin{aligned} \lambda _{s}\leqslant C^{\sum _{k=0}^{s-1}\left( \frac{p+1}{2}\right) ^k}p^{\sum _{k=0}^{s-1}\frac{s-k}{2}\left( \frac{p+1}{2}\right) ^k}\lambda _0^{\left( \frac{p+1}{2}\right) ^{s}}2^{\frac{p}{2}\sum _{k=0}^{s-1}\mu ^{s-k}\left( \frac{p+1}{2}\right) ^k}, \end{aligned}$$

and so,

$$\begin{aligned} \lambda _{s}&\leqslant C^{2\left( \frac{p+1}{2}\right) ^{s}}p^{\frac{s}{2}\left( \frac{p+1}{2}\right) ^{s-1}}2^{\left( \max \{\mu ,\frac{p+1}{2}\}\right) ^s}\lambda _0^{\left( \frac{p+1}{2}\right) ^{s}} \leqslant 2^{\mu _0^s}, \end{aligned}$$
(A.12)

with \(\mu _0>\max \{\mu ,\frac{p+1}{2}\}>\max \left\{ \sqrt{p},\frac{p+1}{2}\right\} \) and s sufficiently large (depending on \(\mu _0\)). \(\square \)

Remark 4.6

Note that we can refine a bit (A.8) but the final estimate concerning \(\lambda _s\) would not be better than (A.12), considering that \(\mu _0\) is to be chosen strictly greater than \(\max \{\sqrt{p},\frac{p+1}{2}\}\).

1.3 A.3 Details concerning Remarks 3.5 and 3.11

Let \(s\in \mathbb {N}\). In order to ensure that \(\int _{x>\beta t}\left( \partial _x^sz\right) ^2e^{\epsilon (x-\beta t)}\,dx\) is finite for some \(\epsilon >0\), it suffices by (3.17) that

$$\begin{aligned} \sum _{n=0}^{+\infty }\int _\mathbb {R}\left( \partial _x^sz\right) ^2\epsilon ^n\varphi _{[n]}\,dx \end{aligned}$$

is finite. Thus it suffices that the series \(\sum _{n\geqslant 0}C(s,\varphi _{[n]})\epsilon ^n\) converges.

This condition is satisfied under the following assumptions:

$$\begin{aligned} C(s,\varphi _{[1]}) \leqslant c_0C(s+1,\varphi ) \quad \text {and} \quad \lambda _s \leqslant \tilde{c_0}^s. \end{aligned}$$
(A.13)

Indeed, if we assume (A.13), we obtain

$$\begin{aligned} C(s,\varphi _{[n]})\leqslant c_0^n\tilde{c_0}^{2(s+n)}\leqslant \tilde{c_0}^{2s}(c_0\tilde{c_0}^2)^n, \end{aligned}$$

which guarantees the existence of \(\epsilon >0\) such that the series \(\sum _{n\geqslant 0}C(s,\varphi _{[n]})\epsilon ^n\) converges.

From Proposition 3.3, we also deduce, proceeding step by step, that:

$$\begin{aligned} C(s,\varphi _{[n]})&\leqslant c(\eta ,\kappa _1,\kappa _2)2^{\mu _0^s}C(s+1,\varphi )\\&\leqslant c(\eta ,\kappa _1,\kappa _2)^n2^{\mu _0^s+\dots +\mu _0^{s+n-1}}C(s+n,\varphi )\\&\leqslant c(\eta ,\kappa _1,\kappa _2)^n2^{n\mu _0^{s+n-1}}\lambda _{s+n}^2. \end{aligned}$$

Taking \(\tilde{\mu _0}>\mu _0\), this shows that the integral

$$\begin{aligned} \int _{x \geqslant \beta t}\left( \partial _x^sz\right) ^2(t,x)\left( \sum _{n=0}^{+\infty }\frac{(x-\beta t)^n}{2^{\tilde{\mu _0}^{s+n}}}\right) \,dx \end{aligned}$$

is finite.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Côte, R., Friederich, X. Spatial decay of multi-solitons of the generalized Korteweg-de Vries and nonlinear Schrödinger equations. Math. Ann. 387, 1163–1198 (2023). https://doi.org/10.1007/s00208-022-02484-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02484-8

Mathematics Subject Classification

Navigation