Skip to main content
Log in

An analogue of Ingham’s theorem on the Heisenberg group

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove an exact analogue of Ingham’s uncertainty principle for the group Fourier transform on the Heisenberg group. This is accomplished by explicitly constructing compactly supported functions on the Heisenberg group whose operator valued Fourier transforms have suitable Ingham type decay and proving an analogue of Chernoff’s theorem for the family of special Hermite operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, Lars V.: Complex Analysis: An introduction to the theory of analytic functions of one complex variable. 3rd Edition, McGraw-Hill, Inc

  2. Bhowmik, M., Ray, S.K., Sen, S.: Around theorems of Ingham-type regarding decay of Fourier transform on \(\mathbb{R} ^n, \mathbb{T} ^n\) and two step nilpotent Lie Groups. Bull. Sci. Math 155, 33–73 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhowmik, M., Pusti, S., Ray, S.K.: Theorems of Ingham and Chernoff on Riemannian symmetric spaces of noncompact type. Journal of Functional Analysis, 279(11), (2020)

  4. Bhowmik, M., Sen, S.: Uncertainty principles of Ingham and Paley-wiener on semisimple Lie groups. Israel J. Math. 225, 193–221 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bochner, S., Taylor, A.E.: Some theorems on quasi-analyticity for functions of several variables. Amer. J. Math. 61(2), 303–329 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bochner, S.: Quasi-analytic functions. Laplace operator, positive kernels Ann. of Math. (2) 51, 68–91 (1950). (MR0032708 (11,334g))

    MATH  Google Scholar 

  7. Chernoff, P.R.: Some remarks on quasi-analytic vectors. Trans. Amer. Math. Soc. 167, 105–113 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chernoff, P.R.: Quasi-analytic vectors and quasi-analytic functions. Bull. Amer. Math. Soc. 81, 637–646 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Folland, G.B.: Harmonic Analysis in Phase Space, Ann. Math. Stud., vol. 122. Princeton University Press, Princeton, N.J (1989)

    Google Scholar 

  10. Ganguly, P., Thangavelu, S.: Theorems of Chernoff and Ingham for certain eigenfunction expansions. Adv. Math., 386, (2021). https://doi.org/10.1016/j.aim.2021.107815

  11. Ganguly, P., Thangavelu, S.: Analogues of theorems of Chernoff and Ingham on the Heisenberg group. Accepted for publication in J. Anal. Math. (2021). arXiv:2106.02704

  12. Ganguly, P., Manna, R., Thangavelu, S.: On a theorem of Chernoff on rank one Riemannian symmetric spaces. J. Funct. Anal. 282(5), 109351 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Geller, D.: Spherical harmonics, the Weyl transform and the Fourier transform on the heisenberg group. Canad. J. Math. 36(4), 625–684 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ingham, A.E.: A Note on Fourier Transforms. J. Lond. Math. Soc. S1–9(1), 29–32 (1934). (MR1574706)

    Article  MathSciNet  MATH  Google Scholar 

  15. de M, Jeu: Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights. Ann. Probab. 31(3), 1205–1227 (2003). (MR1988469 (2004f:44006))

    MathSciNet  MATH  Google Scholar 

  16. Krötz, B., Olafasson, G., Stanton, R.J.: The image of heat kernel transform on Riemannian symmetric spaces of the noncompact type. Int.Math.Res.Not., (22), 1307-1329 (2005)

  17. Krötz, B., Thangavelu, S., Xu, Y.: Heat kernel transform for nilmanifolds associated to the Heisenberg group. Rev. Mat. Iberoam. 24(1), 243–266 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lakshmi Lavanya, R., Thangavelu, S.: Revisiting the Fourier transform on the Heisenberg group. Publ. Mat. 58, 47–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levinson, N.: On a Class of Non-Vanishing Functions. Proc. Lond. Math. Soc. 41(1), 393–407 (1936). (MR1576177)

    Article  MathSciNet  MATH  Google Scholar 

  20. Markett, C.: Mean Cesàro summability of Laguerre expansions and norm estimates with shifted parameter. Anal. Math. 8(1), 19–37 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Muckenhoupt, B.: Mean convergence of Hermite and Laguerre series. II Trans. Am. Math. Soc. 147, 433–460 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  22. Masson, D., McClary, W.: Classes of \(C^{\infty }\) vectors and essential self-adjointness. J. Funct. Anal. 10, 19–32 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nussbaum, A.E.: Quasi-analytic vectors. Ark. Mat. 6, 179–191 (1965). (MR 33 No.3105)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nussbaum, A.E.: A note on quasi-analytic vectors. Studia Math. 33, 305–309 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  25. Paley, R.E.A.C., Wiener, N.: Notes on the theory and application of Fourier transforms. I. Trans. Am. Math. Soc. 35(2), 348–355 (1933)

    MathSciNet  MATH  Google Scholar 

  26. Paley, R.E.A.C., Wiener, N.: Notes on the theory and application of Fourier transforms. II. Trans. Am. Math. Soc. 35(2), 348–355 (1933)

    MathSciNet  MATH  Google Scholar 

  27. Paley, R.E.A.C., Wiener, N.: Fourier transforms in the complex domain (Reprint of the 1934 original) American Mathematical Society Colloquium Publications, 19. American Mathematical Society, Providence, RI (1987)

    Google Scholar 

  28. Reed, M., Simon, B.: Methods of modern mathematical physics I: Functional Analysis, Academic Press, INC. (London) LTD

  29. Roncal, L., Thangavelu, S.: An extension problem and trace Hardy inequality for the sublaplacian on the \(H\)-type gropus. Int.Math.Res.Not. (14), 4238-4294 (2020)

  30. Rudin, W.: Functional Analysis. 2nd edition, McGraw-Hill, Inc

  31. Schymura, D.: An upper bound on the volume of the symmetric difference of a body and a congruent copy. Adv. Geom. 14(2), 287–298 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Simon, B.: The theory of semi-analytic vectors: A new proof of a theorem of Masson and McClary. Indiana Univ. Math. J. 20(1970/71), 1145-1151. MR 44 No.7357

  33. Stein, E.M., Shakarchi, R.: Real Analysis: Measure Thery, Integration and Hilbert spaces, Princeton Lectures in Analysis III, Princeton University Press

  34. Taylor, M.E.: Non-commutative Harmonic Analysis. Amer. Math. Soc, Providence, RI (1986)

    Google Scholar 

  35. Thangavelu, S.: Lectures on Hermite and Laguerre expansions, Mathematical Notes 42. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  36. Thangavelu, S.: Harmonic Analysis on the Heisenberg group, Progress in Mathematics 159. Birkhäuser, Boston, MA (1998)

    Book  Google Scholar 

  37. Thangavelu, S.: An introduction to the uncertainty principle. Hardy’s theorem on Lie groups. With a foreword by Gerald B. Folland, Progress in Mathematics 217. Birkhäuser, Boston, MA (2004)

  38. Thangavelu, S.: Gutzmer’s formula and Poisson integrals on the Heisenberg group. Pacific J. Math. 231(1), 217–237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Thangavelu, S.: An analogue of Pfannschmidt’s theorem for the Heisenberg group, The Journal of. Analysis 26, 235–244 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referee for his/her careful reading of the manuscript and offering constructive suggestions. We have incorporated all the corrections and modifications suggested by the referee which have greatly improved the exposition. The work of the first named author is supported by the INSPIRE Faculty Award from the Department of Science and Technology. The second author is supported by Int.Ph.D. scholarship from Indian Institute of Science. The third named author is supported by NBHM Post-Doctoral fellowship from the Department of Atomic Energy (DAE), Government of India. The work of the last named author is supported by J. C. Bose Fellowship from the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritam Ganguly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagchi, S., Ganguly, P., Sarkar, J. et al. An analogue of Ingham’s theorem on the Heisenberg group. Math. Ann. 387, 1073–1104 (2023). https://doi.org/10.1007/s00208-022-02479-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02479-5

Mathematics Subject Classification

Navigation