Skip to main content
Log in

Ancient solutions to the Ricci flow with isotropic curvature conditions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that every n-dimensional, \(\kappa \)-noncollapsed, noncompact, complete ancient solution to the Ricci flow with uniformly PIC for \(n=4\) or \(n\ge 12\) has weakly PIC\(_2\) and bounded curvature. Combining this with the results in Brendle and Naff (Rotational symmetry of ancient solutions to the Ricci flow in higher dimensions, arXiv:2005.05830), we prove that any such solution is isometric to either a family of shrinking cylinders (or a quotient thereof) or the Bryant soliton. Also, we classify all complex 2-dimensional, \(\kappa \)-noncollapsed, complete ancient solutions to the Kähler Ricci flow with weakly PIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bamler, R., Cabezas-Rivas, E., Wilking, B.: The Ricci flow under almost non-negative curvature conditions. Invent. Math. 217, 95–126 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Böhm, C., Wilking, B.: Manifolds with positive curvature operators are space forms. Ann. Math. 167, 1079–1097 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Brendle, S.: Ancient solutions to the Ricci flow in dimension 3. Acta Math. 225, 1–102 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Brendle, S.: A generalization of Hamilton’s differential Harnack inequality for the Ricci flow. J. Differ. Geom. 82(1), 207–227 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Brendle, S.: Einstein manifolds with nonnegative isotropic curvature are locally symmetric. Duke Math. J. 151(1), 1–21 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Brendle, S.: Ricci Flow and the Sphere Theorem, Graduate Studies in Mathematics, vol. 111. American Mathematical Society, Providence (2010). (MR 2583938)

  7. Brendle, S.: Ricci flow with surgery on manifolds with positive isotropic curvature. Ann. Math. 190(2), 465–559 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Brendle, S.: Ricci flow with surgery in higher dimensions. Ann. Math. 187, 263–299 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Brendle, S.: Rotational symmetry of Ricci solitons in higher dimensions. J. Differ. Geom. 97(2), 191–214 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Brendle, S., Daskalopoulos, P., Sesum, N.: Uniqueness of compact ancient solutions to three-dimensional Ricci flow. Invent. Math. (2021). https://doi.org/10.1007/s00222-021-01054-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Brendle, S., Huisken, G., Sinestrari, C.: Ancient solutions to the Ricci flow with pinched curvature. Duke Math. J. 158, 537–551 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Brendle, S., Naff, K.: Rotational symmetry of ancient solutions to the Ricci flow in higher dimensions. arXiv:2005.05830

  13. Brendle, S., Schoen, R.: Manifolds with 1/4-pinched curvature are space forms. J. Am. Math. Soc. 22(1), 287–307 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Cabezas-Rivas, E., Wilking, B.: How to produce a Ricci flow via Cheeger–Gromoll exhaustion. J. Eur. Math. Soc. 17(12), 3153–3194 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Cao, H.-D.: On dimension reduction in the Kähler–Ricci flow. Commun. Anal. Geom. 12, 305–320 (2004)

    MATH  Google Scholar 

  16. Cao, H.-D.: Limits of solutions to the Kähler–Ricci flow. J. Differ. Geom. 45(2), 257–272 (1997)

    MATH  Google Scholar 

  17. Cao, H.-D.: On Harnack’s inequalities for the Kähler–Ricci flow. Invent. Math. 109(2), 247–263 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Cao, X., Zhang, Q.S.: The conjugate heat equation and ancient solutions of the Ricci flow. Adv. Math. 228(5), 2891–2919 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Cheeger, J., Gromov, M.: Collapsing Riemannian manifolds while keeping their curvature bounded. II. J. Differ. Geom. 23(3), 309–346 (1986)

    MATH  Google Scholar 

  20. Cheeger, J., Fukaya, K., Gromov, M.: Nilpotent structures and invariant metrics on collapsed manifolds. J. Am. Math. Soc. 5(2), 327–372 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82(2), 363–382 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Chen, X., Li, Y.: On the geometry of asymptotically flat manifolds. arXiv:1908.07248

  23. Chen, B.-L., Tang, S.-H., Zhu, X.-P.: A uniformization theorem for complete non-compact Kähler surfaces with positive bisectional curvature. J. Differ. Geom. 67(3), 519–570 (2004)

    MATH  Google Scholar 

  24. Chen, B.-L., Tang, S.-H., Zhu, X.-P.: Complete classification of compact four-manifolds with positive isotropic curvature. J. Differ. Geom. 91(1), 41–80 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Chen, B.-L., Zhu, X.-P.: Volume growth and curvature decay of positively curved Kähler manifolds. Pure Appl. Math. Quart. 1(1), 68–108 (2005)

    MATH  Google Scholar 

  26. Chen, B.-L., Zhu, X.-P.: Ricci flow with surgery on four-manifolds with positive isotropic curvature. J. Differ. Geom. 74(2), 177–264 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Chen, B.-L., Zhu, X.-P.: Uniqueness of the Ricci flow on complete noncompact manifolds. J. Differ. Geom. 74(1), 119–154 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow, Graduate Studies in Mathematics, vol. 77. American Math. Soc., Science Press, Providence, New York (2006)

    Google Scholar 

  29. Chu, S.-C.: Type II ancient solutions to the Ricci flow on surfaces. Commun. Anal. Geom. 15, 195–216 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Daskalopoulos, P., Hamilton, R., Sesum, N.: Classification of ancient compact solutions to the Ricci flow on surfaces. J. Differ. Geom. 91, 171–214 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Daskalopoulos, P., Sesum, N.: Eternal solutions to the Ricci flow on \(\mathbb{R} ^2\). Int. Math. Res. Not. 2006, 83610 (2006)

    MATH  Google Scholar 

  32. Deng, Y., Zhu, X.: Rigidity of \(\kappa \)-noncollapsed steady Kähler–Ricci solitons. Math. Ann. 377, 847–861 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Deng, Y., Zhu, X.: A note on compact \(\kappa \)-solutions of Kähler–Ricci flow. Proc. Am. Math. Soc. 148, 3073–3078 (2020)

    MATH  Google Scholar 

  34. Gu, H., Zhang, Z.: An extension of Mok’s theorem on the generalized Frankel conjecture. Sci. China Math. 53(5), 1253–1264 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)

    MathSciNet  MATH  Google Scholar 

  36. Hamilton, R.S.: Four-manifolds with positive isotropic curvature. Commun. Anal. Geom. 5(1), 1–92 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Hamilton, R.S.: The formation of singularities in the Ricci flow. In: Surveys in Differential Geometry, vol. II, pp. 7–136. International Press, Somerville (1995)

  38. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12, 2587–2855 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Kotschwar, B.: Ricci flow and the holonomy group. J. Reine Angew. Math. 690, 131–161 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Li, Y.: Ancient solutions to the Kähler Ricci flow. arXiv:2008.06951

  41. Li, X., Ni, L.: Kähler–Ricci shrinkers and ancient solutions with nonnegative orthogonal bisectional curvature. J. Math. Pures Appl. 138, 28–45 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Li, X., Ni, L., Wang, K.: Four-dimensional gradient shrinking solitons with positive isotropic curvature. Int. Math. Res. Not. 2018(3), 949–959 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Li, X., Zhang, Y.: Ancient solutions to the Ricci flow in higher dimensions. arXiv:1812.04156

  44. Micallef, M.J., Moore, J.D.: Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann. Math. (2) 127(1), 199–227 (1988)

    MathSciNet  MATH  Google Scholar 

  45. Morgan, J.W., Tian, G.: Ricci Flow and the Poincaré Conjecture. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  46. Naber, A.: Noncompact shrinking 4-solitons with nonnegative curvature. J. Reine Angew. Math. 645, 125–153 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Naff, K.: Shrinking Ricci solitons with positive isotropic curvature. arXiv:1905.10305

  48. Ni, L.: Ancient solution to Kähler–Ricci flow. Math. Res. Lett. 12(5), 633–654 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Ni, L., Tam, L.F.: Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature. J. Differ. Geom. 64(3), 457–524 (2003)

    MATH  Google Scholar 

  50. Nguyen, H.: Isotropic curvature and the Ricci flow. Int. Math. Res. Not. 2010(3), 536–558 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159

  52. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math/0303109

  53. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math/0307245

  54. Yokota, T.: Complete ancient solutions to the Ricci flow with pinched curvature. Commun. Anal. Geom. 25(2), 485–506 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yu Li is supported by YSBR-001 and a research fund from USTC.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, J.H., Li, Y. Ancient solutions to the Ricci flow with isotropic curvature conditions. Math. Ann. 387, 1009–1041 (2023). https://doi.org/10.1007/s00208-022-02478-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02478-6

Navigation