Skip to main content
Log in

On minima of difference of theta functions and application to hexagonal crystallization

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(z=x+iy \in \mathbb {H}:=\{z= x+ i y\in \mathbb {C}: y>0\}\) and \(\theta (\alpha ;z)=\sum _{(m,n)\in \mathbb {Z}^2} e^{-\alpha \frac{\pi }{y }|mz+n|^2}\) be the theta function associated with the lattice \(L =\sqrt{\frac{1}{{\text {Im}}(z)}}\left( {\mathbb Z}\oplus z{\mathbb Z}\right) \). In this paper we consider the following minimization problem of difference of two theta functions

$$\begin{aligned} \min _{ \mathbb {H} } \left( \theta (\alpha ; z)-\beta \theta (2\alpha ; z)\right) \end{aligned}$$

where \(\alpha \ge 1\) and \( \beta \in (-\infty , +\infty )\). We prove that there is a critical value \(\beta _c=\sqrt{2}\) (independent of \(\alpha \)) such that if \(\beta \le \beta _c\), the minimizer is \(\frac{1}{2}+i\frac{\sqrt{3}}{2}\) (up to translation and rotation) which corresponds to the hexagonal lattice, and if \(\beta >\beta _c\), the minimizer does not exist. Our result partially answers some questions raised in Bétermin (SIAM J Math Anal 48(5):3236–269, 2016), Bétermin (Nonlinearity 31(9):3973–4005, 2018), Bétermin et al. (Models Methods Appl Sci 31(2):293–325, 2021) and Bétermin and Petrache (Anal Math Phys 9(4):2033–2073, 2019) and gives a new proof in the hexagonal crystallization among lattices under Yukawa potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abrikosov, A.A.: Nobel lecture: type-II superconductors and the vortex lattice. Rev. Mod. Phys. 76(3), 975 (2004)

    Article  Google Scholar 

  2. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  3. Bowick, M.J., Kinderlehrer, D., Menon, G., Radin, C.: Mathematics and Materials. A co-publication of the AMS, IAS/Park City Mathematics Institute, and Society for Industrial and Applied Mathematics, Philadelphia (2017)

    Book  MATH  Google Scholar 

  4. Baskes, M.: Many-body effects in Fcc metals: a Lennard–Jones embedded-atom potential. Phys. Rev. Lett. 83(13), 2592 (1999)

    Article  Google Scholar 

  5. Borodachov, S.V., Hardin, D., Douglas, P., Saff, E.B.: Discrete Energy on Rectifiable Sets. Springer Monographs in Mathematics. Springer, New York (2019).. (xviii+666 pp. ISBN: 978-0-387-84807-5; 978-0-387-84808-2)

    Book  MATH  Google Scholar 

  6. Bétermin, L., Zhang, P.: Minimization of energy per particle among Bravais lattices in \(\mathbb{R} ^2\) Lennard–Jones and Thomas–Fermi cases. Commun. Contemp. Math. 17(6), 1450049 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bétermin, L.: Two-dimensional theta functions and crystallization among Bravais lattices. SIAM J. Math. Anal. 48(5), 3236–269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bétermin, L.: Local variational study of 2D lattice energies and application to Lennard–Jones type interactions. Nonlinearity 31(9), 3973–4005 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bétermin, L.: Minimizing lattice structures for Morse potential energy in two and three dimensions. J. Math. Phys. 60(10), 102901 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bétermin, L., Faulhuber, M., Knüpfer, H.: On the optimality of the rock-salt structure among lattices with charge distributions. Math. Models Methods Appl. Sci. 31(2), 293–325 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bétermin, L., Petrache, M.: Optimal and non-optimal lattices for non-completely monotone interaction potentials. Anal. Math. Phys. 9(4), 2033–2073 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bétermin, L.: On energy ground states among crystal lattice structures with prescribed bonds. J. Phys. A 54(24), 245202 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. EMS 2(2), 255–306 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Cerofolini, G., Re, N.: The mathematical theory of adsorption on non-ideal surfaces. La Rivista del Nuovo Cimento (1978-1999), Springer (1993)

  15. Chen, X., Oshita, Y.: An application of the modular function in nonlocal variational problems. Arch. Ration. Mech. Anal. 186(1), 109–132 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, N.: Modified Möbius inverse formula and its applications in physics. Phys. Rev. Lett. 64, 1193 (1990). (Published 12 March 1990; Erratum Phys. Rev. Lett.64, 3203)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cohen, P.: Dedekind Zeta Functions and Quantum Statistical Mechanics. ESI 617 (1998)

  18. Evans, R.: A fundamental region for Hecke modular group. J. Number Theory 5(2), 108–115 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feynman, R., Leighton, R., Sands, M.: Feynman Lectures on Physics, vol. II. Addison-Wesley, Boston (1964)

    MATH  Google Scholar 

  20. Ho, T.L.: Bose–Einstein condensates with large number of vortices. Phys. Rev. Lett. 87, 604031–604034 (2001)

    Article  Google Scholar 

  21. Kato, A.: Classification of modular invariant partition functions in two dimensions. Mod. Phys. Lett. A 2, 585–600 (1987)

    Article  MathSciNet  Google Scholar 

  22. Luo, S., Ren, X., Wei, J.: Non-hexagonal lattices from a two species interacting system. SIAM J. Math. Anal. 52(2), 1903–1942 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luo, S., Wei, J.: On minima of sum of theta functions and application to Mueller-Ho conjecture. Arch. Ration. Mech. Anal. 243(1), 139–199 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo, S., Wei, J., Zou, W.: On universally optimal lattice phase transitions and energy minimizers of completely monotone potentials. arXiv:2110.08728

  25. Matthews, M.R., Anderson, B.P., Haljan, P.C., Hall, D.S., Wieman, C.E., Cornell, E.A.: Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83(13), 2498 (1999)

    Article  Google Scholar 

  26. Mueller, E.J., Ho, T.L.: Two-component Bose–Einstein condensates with a large number of vortices. Phys. Rev. Lett. 88, 180403 (2002)

    Article  Google Scholar 

  27. Montgomery, H.: Minimal theta functions. Glasgow Math. J. 30, 75–85 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mussardo, G.: Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics. OUP Oxford, New York, NY by Oxford Univ. Press, New York (2010)

    MATH  Google Scholar 

  29. Number Theory and Physics: Proceedings of the Winter School, Les Houches, France, March 7–16, 1989 (Springer Proceedings in Physics, 47)

  30. Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80, 148–211 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sarnak, P., Ströbergsson, A.: Minima of Epstein’s zeta function and heights of flat tori. Invent. Math. 165, 115–151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sandier, E., Serfaty, S.: Vortex patterns in Ginzburg-Landau minimizers. In: XVIth International Congress on Mathematical Physics, pp. 246–264, World Sci. Publ. (2010)

  33. Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313, 635–743 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Serfaty, S.: Ginzburg–Landau vortices, Coulomb Gases and Abrikosov lattices. Comptes-Rendus Physique 15(6), 539–546 (2014)

    Article  Google Scholar 

  35. Serfaty, S.: Systems of points with Coulomb interactions. In: Proceedings of the International Congress of Mathematicians Rio de Janeiro 2018. Vol. I. Plenary lectures, pp. 935-977, World Sci. Publ., Hackensack, NJ (2018)

  36. Shen, J., Qian, P., Chen, N.: Atomistic simulation on phase stability and site preference of \(R_2\)(Co, Mn)17 (R = Nd, Sm, Gd). Model. Simul. Mater. Sci. Eng. 13, 239 (2005)

    Article  Google Scholar 

  37. Schumayer, D., Hutchinson, D.: Colloquium: physics of the Riemann hypothesis. Rev. Mod. Phys. 83, 307 (2011)

    Article  Google Scholar 

  38. Sigal, I., Tzaneteas, T.: On stability of Abrikosov vortex lattices. Adv. Math. 326, 108–199 (2018). (MR3758428)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yuan, X., Chen, N., Shen, J., Hu, W.: Embedded-atom-method interatomic potentials from lattice inversion. J. Phys.: Condens. Matter 22, 375503 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors thank referees for many useful suggestions. S. Luo is grateful to Professors W.M. Zou (Tsinghua Univeristy) and H.J. Zhao (Wuhan University) for their constant support and encouragement. The research of S. Luo is partially supported by double thousands plan of Jiangxi (jxsq2019101048) and NSFC (Nos.12001253,12261045). The research of J. Wei is partially supported by NSERC of Canada. We thank Professor L. Bétermin for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senping Luo.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Data availability

The manuscript has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Wei, J. On minima of difference of theta functions and application to hexagonal crystallization. Math. Ann. 387, 499–539 (2023). https://doi.org/10.1007/s00208-022-02476-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02476-8

Navigation