Skip to main content
Log in

Mackey analogy as deformation of \({\mathcal {D}}\)-modules

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Given a real reductive linear Lie group \(G_{\mathbb {R}}\), the Mackey analogy is a bijection between the set of irreducible tempered representations of \(G_{\mathbb {R}}\) and the set of irreducible unitary representations of its Cartan motion group, established by Higson and Afgoustidis. We show that this bijection arises naturally from families of twisted \({\mathcal {D}}\)-modules over the ag variety of \(G_{\mathbb {R}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afgoustidis, A.: On the analogy between real reductive groups and Cartan motion groups: the Mackey-Higson bijection. Camb. J. Math. 9(3), 551–575 (2021)

  2. Afgoustidis, A.: On the analogy between real reductive groups and Cartan motion groups: a proof of the Connes-Kasparov isomorphism. J. Funct. Anal. 277(7), 2237–2258 (2019)

  3. Baranovsky, V., Ginzburg, V., Kaledin, D., Pecharich, J.: Quantization of line bundles on lagrangian subvarieties. Sel. Math. (N.S.) 22(1), 1–25 (2016). https://doi.org/10.1007/s00029-015-0181-2

  4. Baum, P., Connes, A., Higson, N.: Classifying space for proper actions and \(K\)-theory of group \(C^\ast \)-algebras. In: \(C^\ast \)-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., vol. 167, pp. 240–291. Amer. Math. Soc., Providence (1994). https://doi.org/10.1090/conm/167/1292018

  5. Beĭlinson, A., Bernstein, J.: A proof of Jantzen conjectures. In: I.M. Gel’fand Seminar, Adv. Soviet Math., vol. 16, pp. 1–50. Amer. Math. Soc., Providence (1993)

  6. Bernšteĭn, I.N., Gel’fand, I.M., Gel’fand, S.I.: Models of representations of compact Lie groups. Funkcional. Anal. i Priložen. 9(4), 61–62 (1975)

    Google Scholar 

  7. Bernšteĭn, I.N., Gel’fand, I.M., Gel’fand, S.I.: Models of representations of Lie groups. Trudy Sem. Petrovsk. (Vyp. 2), 3–21 (1976)

  8. Bernstein, J., Higson, N.,Subag, E.: Algebraic families of Harish-Chandra pairs. Int. Math. Res. Not. IMRN 2020(15), 4776–4808

  9. Bernstein, J., Higson, N., Subag, E.M.: Contractions of representations and algebraic families of Harish-Chandra modules. Int. Math. Res. Not. IMRN 2020(11), 3494–3520

  10. Bernstein, J., Lunts, V.: Localization for derived categories of \(({\mathfrak{g}}, K)\)-modules. J. Am. Math. Soc. 8(4), 819–856 (1995). https://doi.org/10.2307/2152830

    Article  MATH  Google Scholar 

  11. Chabert, J., Echterhoff, S., Nest, R.: The Connes–Kasparov conjecture for almost connected groups and for linear \(p\)-adic groups. Publ. Math. Inst. Hautes Études Sci. 97, 239–278 (2003). https://doi.org/10.1007/s10240-003-0014-2

    Article  MATH  Google Scholar 

  12. Chang, J.T.: Special \(K\)-types, tempered characters and the Beilinson–Bernstein realization. Duke Math. J. 56(2), 345–383 (1988). https://doi.org/10.1215/S0012-7094-88-05614-1

    Article  MATH  Google Scholar 

  13. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhäuser Boston Inc, Boston (1997)

    MATH  Google Scholar 

  14. Connes, A.: Noncommutative Geometry. Academic Press Inc, San Diego (1994)

    MATH  Google Scholar 

  15. Connes, A., Higson, N.: Déformations, morphismes asymptotiques et \(K\)-théorie bivariante. C. R. Acad. Sci. Paris Sér. I Math. 311(2), 101–106 (1990)

  16. D’Agnolo, A., Schapira, P.: Quantization of complex Lagrangian submanifolds. Adv. Math. 213(1), 358–379 (2007). https://doi.org/10.1016/j.aim.2006.12.009

    Article  MATH  Google Scholar 

  17. Echterhoff, S., Li, K., Nest, R.: The orbit method for the baum-connes conjecture for algebraic groups over local function fields. arXiv:1704.08548 [math.KT]

  18. George, C.Y.: The Mackey analogy for \({SL}(n,{\mathbb{R}})\). PhD thesis, The Pennsylvania State University (2009)

  19. Hecht, H., Milicic, D., Schmid, W., Wolf, J.A.: Localization and standard modules for real semisimple lie groups II: irreducibility, vanishing theorems, and classification. http://www.math.harvard.edu/~schmid/articles/hmsw2.dvi

  20. Higson, N.: The Mackey analogy and \(K\)-theory. In: Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey, Contemp. Math., vol. 449, pp. 149–172. Amer. Math. Soc., Providence (2008). https://doi.org/10.1090/conm/449/08711

  21. Higson, N.: On the analogy between complex semisimple groups and their Cartan motion groups. In: Noncommutative Geometry and Global Analysis, Contemp. Math., vol. 546, pp. 137–170. Amer. Math. Soc., Providence (2011). https://doi.org/10.1090/conm/546/10787

  22. Inonu, E., Wigner, E.P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. USA 39, 510–524 (1953)

    Article  MATH  Google Scholar 

  23. Knapp, A.W., Vogan, D.A., Jr.: Cohomological Induction and Unitary Representations, Princeton Mathematical Series, vol. 45. Princeton University Press, Princeton (1995)

    Book  MATH  Google Scholar 

  24. Knapp, A.W., Zuckerman, G.J.: Classification of irreducible tempered representations of semisimple groups. Ann. Math. (2) 116(2), 389–455 (1982). https://doi.org/10.2307/2007066

  25. Knapp, A.W., Zuckerman, G.J.: Classification of irreducible tempered representations of semisimple groups. II. Ann. Math. (2) 116(3), 457–501 (1982). https://doi.org/10.2307/2007019

  26. Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963). https://doi.org/10.2307/2373130

    Article  MATH  Google Scholar 

  27. Lafforgue, V.: Banach \(KK\)-theory and the Baum–Connes conjecture. In: Proceedings of the International Congress of Mathematicians (Beijing, 2002), vol. II, pp. 795–812. Higher Ed. Press, Beijing (2002)

  28. Leung, C., Yu, S.: Equivariant deformation quantization and coadjoint orbit method. Duke Math. J. 170(8), 1781–1850 (2021). https://doi.org/10.1215/00127094-2020-0066

  29. Lusztig, G., Vogan, D.A., Jr.: Singularities of closures of \(K\)-orbits on flag manifolds. Invent. Math. 71(2), 365–379 (1983). https://doi.org/10.1007/BF01389103

    Article  MATH  Google Scholar 

  30. Mackey, G.W.: Imprimitivity for representations of locally compact groups. I. Proc. Natl. Acad. Sci. USA 35, 537–545 (1949)

    Article  MATH  Google Scholar 

  31. Mackey, G.W.: On the analogy between semisimple Lie groups and certain related semi-direct product groups. In: Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), pp. 339–363. Halsted, New York (1975)

  32. Mackey, G.W.: The theory of unitary group representations. University of Chicago Press, Chicago, Ill.-London (1976). Based on notes by James M. G. Fell and David B. Lowdenslager of lectures given at the University of Chicago, Chicago, 1955, Chicago Lectures in Mathematics

  33. Matsuki, T.: The orbits of affine symmetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Japan 31(2), 331–357 (1979). https://doi.org/10.2969/jmsj/03120331

    Article  MATH  Google Scholar 

  34. Matsuki, T.: Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups. In: Representations of Lie Groups, Kyoto, Hiroshima, 1986, Adv. Stud. Pure Math., vol. 14, pp. 541–559. Academic Press, Boston (1988)

  35. Miličić, D.: Algebraic \({\mathscr {D}}\)-modules and representation theory of semisimple Lie groups. In: The Penrose Transform and Analytic Cohomology in Representation Theory (South Hadley, MA, 1992), Contemp. Math., vol. 154, pp. 133–168. Amer. Math. Soc., Providence (1993). https://doi.org/10.1090/conm/154/01361

  36. Mirkovic, I.: Classification of irreducible tempered representations of semisimple groups. ProQuest LLC, Ann Arbor. Thesis (Ph.D.)–The University of Utah (1986). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:8624439

  37. Nest, R., Tsygan, B.: Remarks on modules over deformation quantization algebras. Mosc. Math. J. 4(4), 911–940, 982 (2004)

  38. Oshima, Y.: Localization of cohomological induction. Publ. Res. Inst. Math. Sci. 49(2), 361–391 (2013). https://doi.org/10.4171/PRIMS/108

    Article  MATH  Google Scholar 

  39. Oshima, Y.: On the restriction of Zuckerman’s derived functor modules \(A_q(\lambda )\) to reductive subgroups. Am. J. Math. 137(4), 1099–1138 (2015). https://doi.org/10.1353/ajm.2015.0026

    Article  MATH  Google Scholar 

  40. Segal, I.E.: A class of operator algebras which are determined by groups. Duke Math. J. 18, 221–265 (1951). http://projecteuclid.org/euclid.dmj/1077476400

  41. Skukalek, J.R.: The Higson–Mackey analogy for finite extensions of complex semisimple groups. J. Noncommut. Geom. 9(3), 939–963 (2015). https://doi.org/10.4171/JNCG/212

    Article  MATH  Google Scholar 

  42. Springer, T.A.: Algebraic groups with involutions. In: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conf. Proc., vol. 6, pp. 461–471. Amer. Math. Soc., Providence (1986)

  43. Subag, E.: The algebraic Mackey-Higson bijections. Preprint (2017). arXiv:1706.05616

  44. Tan, Q., Yao, Y.J., Yu, S.: Mackey analogy via \({\mathscr {D}}\)-modules for \(sl(2, {\mathbb{R}})\). Int. J. Math. 28(07), 1750055 (2017). https://doi.org/10.1142/S0129167X17500550

    Article  MATH  Google Scholar 

  45. Vogan, D.A.: Lie algebra cohomology and the representations of semisimple lie groups. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge (1976)

  46. Vogan, D.A.: Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case. Invent. Math. 71(2), 381–417 (1983). https://doi.org/10.1007/BF01389104

  47. Vogan Jr., D.A.: The algebraic structure of the representation of semisimple Lie groups. I. Ann. Math. (2) 109(1), 1–60 (1979). https://doi.org/10.2307/1971266

  48. Vogan, D.A., Jr.: Representations of Real Reductive Lie Groups, Progress in Mathematics, vol. 15. Birkhäuser, Boston (1981)

    MATH  Google Scholar 

  49. Vogan Jr., D.A.: Associated varieties and unipotent representations. In: Harmonic Analysis on Reductive Groups (Brunswick, ME, 1989), Progr. Math., vol. 101, pp. 315–388. Birkhäuser Boston, Boston(1991)

  50. Vogan Jr., D.A.: A Langlands classification for unitary representations. In: Analysis on homogeNeous Spaces and Representation Theory of Lie Groups, Okayama–Kyoto (1997), Adv. Stud. Pure Math., vol. 26, pp. 299–324. Math. Soc. Japan, Tokyo (2000)

  51. Wassermann, A.: A proof of the Connes–Kasparov conjecture for the groups of Lie linear related educative. C R Acad. Sci. Paris Sér. I Math. 304(18), 559–562 (1987)

Download references

Acknowledgements

The author would like to thank Jonathan Block, Justin Hilburn, Nigel Higson and Tony Pantev for numerous discussions. The author appreciates Alexandre Afgoustidis for sharing the draft of his paper at early stage and for the detailed explanations of his work. The author also wants to express gratitude to Dragan Miličić, Wilfried Schmid and David Vogan for their great patience with the author’s elementary questions about representation theory. The hospitality of Jeffrey Adams and David Vogan during the author’s visit to University of Maryland and Massachusetts Institute of Technology respectively is gratefully acknowledged.

Special thanks go to Junyan Cao, who offered the floor of his hotel room to the author during the ‘Algebraic Geometry 2015’ conference at University of Utah, where the main idea of this paper came up.

The author was partially supported by the Direct Grants and Research Fellowship Scheme from The Chinese University of Hong Kong, the US National Science Foundation (Award No. 1564398 and 1700021), the China NSFC grants (Project No. 12001453 and 1213000100) and Fundamental Research Funds for the Central Universities (Project No. 20720200067 and 20720200071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilin Yu.

Additional information

Communicated by Thomas Schick.

Dedicated to the memory of Krzysztof Wysocki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S. Mackey analogy as deformation of \({\mathcal {D}}\)-modules. Math. Ann. 385, 421–457 (2023). https://doi.org/10.1007/s00208-021-02332-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02332-1

Keywords

Mathematics Subject Classification

Navigation