Skip to main content
Log in

On the heterogeneous distortion inequality

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

A Correction to this article was published on 11 October 2023

This article has been updated

Abstract

We study Sobolev mappings \(f \in W_{\mathrm {loc}}^{1,n} (\mathbb {R}^n, \mathbb {R}^n)\), \(n \ge 2\), that satisfy the heterogeneous distortion inequality

$$\begin{aligned} \left| Df(x) \right| ^n \le K J_f(x) + \sigma ^n(x) \left| f(x) \right| ^n \end{aligned}$$

for almost every \(x \in \mathbb {R}^n\). Here \(K \in [1, \infty )\) is a constant and \(\sigma \ge 0\) is a function in \(L^n_\mathrm {loc}(\mathbb {R}^n)\). Although we recover the class of K-quasiregular mappings when \(\sigma \equiv 0\), the theory of arbitrary solutions is significantly more complicated, partly due to the unavailability of a robust degree theory for non-quasiregular solutions. Nonetheless, we obtain a Liouville-type theorem and the sharp Hölder continuity estimate for all solutions, provided that \(\sigma \in L^{n-\varepsilon }(\mathbb {R}^n) \cap L^{n+\varepsilon }(\mathbb {R}^n)\) for some \(\varepsilon >0\). This gives an affirmative answer to a question of Astala, Iwaniec and Martin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  2. Caccioppoli, R.: Limitazioni integrali per le soluzioni di un’equazione lineare ellitica a derivate parziali. Giorn. Mat. Battaglini (4) 4(80), 186–212 (1951)

    MathSciNet  MATH  Google Scholar 

  3. Campanato, S.: Equazioni ellittiche del \({\rm II}\deg \) ordine espazi \({ L}^{(2,\lambda )}\). Ann. Mat. Pura Appl. 4(69), 321–381 (1965)

    Article  Google Scholar 

  4. Cauchy, A.: C. R. Acad. Sci. Paris 19, 1377–1384 (1844)

  5. Convent, A., Van Schaftingen, J.: Intrinsic co-local weak derivatives and Sobolev spaces between manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16(1), 97–128 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Revised Textbooks in Mathematics. CRC Press, Boca Raton (2015)

  7. Faraco, D., Zhong, X.: A short proof of the self-improving regularity of quasiregular mappings. Proc. Am. Math. Soc. 134(1), 187–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fonseca, I., Gangbo, W.: Degree Theory in Analysis and Applications. Oxford Lecture Series in Mathematics and Its Applications, vol. 2. The Clarendon Press, Oxford University Press, Oxford Science Publications, New York (1995)

  9. Gehring, F.W.: The \(L^{p}\)-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hajłasz, P., Iwaniec, T., Malỳ, J., Onninen, J.: Weakly differentiable mappings between manifolds. Mem. Am. Math. Soc. 192(899) (2008)

  11. Hedberg, L.I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505–510 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover, New York (2006)

    MATH  Google Scholar 

  13. Hencl, S., Koskela, P.: Lectures on Mappings of Finite Distortion. Lecture Notes in Mathematics, vol. 2096. Springer, Cham (2014)

  14. Hencl, S., Rajala, K.: Optimal assumptions for discreteness. Arch. Ration. Mech. Anal. 207(3), 775–783 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iwaniec, T.: \(p\)-harmonic tensors and quasiregular mappings. Ann. Math. 136(3), 589–624 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iwaniec, T., Koskela, P., Onninen, J.: Mappings of finite distortion: monotonicity and continuity. Invent. Math. 144(3), 507–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iwaniec, T., Martin, G.: Quasiregular mappings in even dimensions. Acta Math. 170(1), 29–81 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis. Clarendon Press, Oxford (2001)

    MATH  Google Scholar 

  19. Iwaniec, T., Scott, C., Stroffolini, B.: Nonlinear Hodge theory on manifolds with boundary. Ann. Mat. Pura Appl. (4) 177(1), 37–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iwaniec, T., Šverák, V.: On mappings with integrable dilatation. Proc. Am. Math. Soc. 118(1), 181–188 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. McShane, E.J.: Extension of range of functions. Bull. Am. Math. Soc. 40(12), 837–842 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morrey, C.B., Jr.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43(1), 126–166 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morrey, C.B., Jr.: Second-order elliptic systems of differential equations. In: Contributions to the Theory of Partial Differential Equations. Annals of Mathematics Studies, vol. 33, pp. 101–159. Princeton University Press, Princeton (1954)

  24. Morrey, C.B., Jr.: Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer-Verlag New York, Inc., New York (1966)

  25. Onninen, J., Zhong, X.: Mappings of finite distortion: a new proof for discreteness and openness. Proc. R. Soc. Edinb. Sect. A 138(5), 1097–1102 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reshetnyak, Y.G.: Bounds on moduli of continuity for certain mappings. Sibirsk. Mat. Zh. 7, 1106–1114 (1966). (Russian)

    Google Scholar 

  27. Reshetnyak, Y.G.: The Liouville theorem with minimal regularity conditions. Sibirsk. Mat. Zh. 8, 835–840 (1967). (Russian)

    MATH  Google Scholar 

  28. Reshetnyak, Y.G.: On the condition of the boundedness of index for mappings with bounded distortion. Sibirsk. Mat. Zh. 9, 368–374 (1967). (Russian)

    MathSciNet  Google Scholar 

  29. Reshetnyak, Y.G.: Space mappings with bounded distortion. Sibirsk. Mat. Zh. 8, 629–659 (1967). (Russian)

    Google Scholar 

  30. Reshetnyak, Y.G.: Space Mappings with Bounded Distortion. Translations of Mathematical Monographs, vol. 73. American Mathematical Society, Providence (1989)

  31. Rickman, S.: Quasiregular Mappings, vol. 26. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  32. Villamor, E., Manfredi, J.J.: An extension of Reshetnyak’s theorem. Indiana Univ. Math. J. 47(3), 1131–1145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vodop’janov, S.K., Gol’dšteĭn, V.M.: Quasiconformal mappings, and spaces of functions with first generalized derivatives. Sibirsk. Mat. Ž. 17(3), 515–531, 715 (1976)

  34. Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)

  35. Zorič, V.A.: M. A. Lavrent’ev’s theorem on quasiconformal space maps. Mat. Sb. (N.S.) 74(116), 417–433 (1967)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Tadeusz Iwaniec and Xiao Zhong for discussions and shared insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jani Onninen.

Additional information

Communicated by Loukas Grafakos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. Onninen was supported by the NSF grant DMS-1700274.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangasniemi, I., Onninen, J. On the heterogeneous distortion inequality. Math. Ann. 384, 1275–1308 (2022). https://doi.org/10.1007/s00208-021-02315-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02315-2

Mathematics Subject Classification

Navigation