Skip to main content
Log in

Weighted multiplier ideals of reduced divisors

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We use methods from birational geometry to study the Hodge and weight filtrations on the localization along a hypersurface. We focus on the lowest piece of the Hodge filtration of the submodules arising from the weight filtration. This leads to a sequence of ideal sheaves called weighted multiplier ideals. The last ideal of this sequence is a multiplier ideal (and a Hodge ideal), and we prove that the first is the adjoint ideal. We also study the local and global properties of weighted multiplier ideals and their applications to singularities of hypersurfaces of smooth varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruce, J..W., Wall, C..T..C.: On the classification of cubic surfaces. J. Lond. Math. Soc. (2) 19(2), 245–256 (1979). https://doi.org/10.1112/jlms/s2-19.2.245

    Article  MathSciNet  MATH  Google Scholar 

  2. Budur, N., Saito, M.: Multiplier ideals, \(V\)-filtration, and spectrum. J. Algebr. Geom. 14(2), 269–282 (2005). https://doi.org/10.1090/S1056-3911-04-00398-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Budur, R.D.N.: Multiplier ideals and Hodge theory. ProQuest LLC, Ann Arbor (2003). http://gateway.proquest.com.proxy.lib.umich.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3098310. Thesis (Ph.D.)—University of Illinois at Chicago

  4. Cattani, E., El Zein, F., Griffiths, P.A., Lê, D.T. (eds.): Hodge theory, Mathematical Notes, vol. 49. Princeton University Press, Princeton (2014). https://doi.org/10.1515/9781400851478

  5. Dimca, A.: Betti numbers of hypersurfaces and defects of linear systems. Duke Math. J. 60(1), 285–298 (1990). https://doi.org/10.1215/S0012-7094-90-06010-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Ein, L., Lazarsfeld, R.: Singularities of theta divisors and the birational geometry of irregular varieties. J. Am. Math. Soc. 10(1), 243–258 (1997). https://doi.org/10.1090/S0894-0347-97-00223-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Ishii, S.: On isolated Gorenstein singularities. Math. Ann. 270(4), 541–554 (1985). https://doi.org/10.1007/BF01455303

    Article  MathSciNet  MATH  Google Scholar 

  8. Ishii, S.: Introduction to Singularities, 2nd edn. Springer, Tokyo (2018). https://doi.org/10.1007/978-4-431-56837-7

  9. Kebekus, S., Schnell, C.: Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities. J. Am. Math. Soc. 34(2), 315–368 (2021). https://doi.org/10.1090/jams/962

    Article  MathSciNet  MATH  Google Scholar 

  10. Kollár, J., Kovács, S.J.: Log canonical singularities are Du Bois. J. Am. Math. Soc. 23(3), 791–813 (2010). https://doi.org/10.1090/S0894-0347-10-00663-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Lazarsfeld, R.: Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48. Springer, Berlin (2004). https://doi.org/10.1007/978-3-642-18808-4. Classical setting: line bundles and linear series

  12. Lazarsfeld, R.: Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49. Springer, Berlin (2004). https://doi.org/10.1007/978-3-642-18808-4. Positivity for vector bundles, and multiplier ideals

  13. Lazarsfeld, R.: A short course on multiplier ideals. In: Analytic and Algebraic Geometry. IAS/Park City Math. Ser., vol. 17, pp. 451–494. Amer. Math. Soc., Providence (2010)

  14. Mustaţă, M., Popa, M.: Hodge ideals. Mem. Am. Math. Soc. 262(1268), v+80 (2019). https://doi.org/10.1090/memo/1268

  15. Mustaţǎ, M., Popa, M.: Restriction, subadditivity, and semicontinuity theorems for Hodge ideals. Int. Math. Res. Not. IMRN 11, 3587–3605 (2018). https://doi.org/10.1093/imrn/rnw343

    Article  MathSciNet  MATH  Google Scholar 

  16. Mustaţǎ, M., Popa, M.: Hodge ideals for \({ Q}\)-divisors: birational approach. J. Éc. Polytech. Math. 6, 283–328 (2019)

    Article  MathSciNet  Google Scholar 

  17. Olano, S.: Weighted Hodge ideals (2021) (in preparation)

  18. Payne, S.: Boundary complexes and weight filtrations. Mich. Math. J. 62(2), 293–322 (2013). https://doi.org/10.1307/mmj/1370870374

    Article  MathSciNet  MATH  Google Scholar 

  19. Peters, C.A.M., Steenbrink, J.H.M.: Mixed Hodge structures. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52. Springer, Berlin (2008)

  20. Saito, M.: Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci. 24(6), 849–995 (1989) (1988). https://doi.org/10.2977/prims/1195173930

  21. Saito, M.: Mixed Hodge modules. Publ. Res. Inst. Math. Sci. 26(2), 221–333 (1990). https://doi.org/10.2977/prims/1195171082

    Article  MathSciNet  MATH  Google Scholar 

  22. Saito, M.: On \(b\)-function, spectrum and rational singularity. Math. Ann. 295(1), 51–74 (1993). https://doi.org/10.1007/BF01444876

    Article  MathSciNet  MATH  Google Scholar 

  23. Saito, M.: On the Hodge filtration of Hodge modules. Mosc. Math. J. 9(1), 161–191 (2009). https://doi.org/10.17323/1609-4514-2009-9-1-151-181. (back matter)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schnell, C.: An overview of Morihiko Saito’s theory of mixed Hodge modules. arXiv e-prints arXiv:1405.3096 (2014)

  25. Schnell, C.: On Saito’s vanishing theorem. Math. Res. Lett. 23(2), 499–527 (2016). https://doi.org/10.4310/MRL.2016.v23.n2.a10

    Article  MathSciNet  MATH  Google Scholar 

  26. Steenbrink, J.H.M.: Mixed Hodge structures associated with isolated singularities. In: Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, pp. 513–536. Amer. Math. Soc., Providence (1983)

  27. Umezu, Y.: On normal projective surfaces with trivial dualizing sheaf. Tokyo J. Math. 4(2), 343–354 (1981). https://doi.org/10.3836/tjm/1270215159

    Article  MathSciNet  MATH  Google Scholar 

  28. Voisin, C.: Hodge theory and complex algebraic geometry. I. Cambridge Studies in Advanced Mathematics, vol. 76, English edn. Cambridge University Press, Cambridge (2007). Translated from the French by Leila Schneps

Download references

Acknowledgements

I would like to thank Mihnea Popa for his constant support during the project, and Tommaso de Fernex, Lawrence Ein, Sándor Kovács, Mircea Mustaţă, and Mingyi Zhang for very helpful discussions. Finally, I am thankful to the anonymous referee for valuable comments and especially for pointing out previously known results about the Hodge theoretic interpretation of the adjoint ideal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Olano.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Data availability

The author declares that there is no data associate for the submission.

Additional information

Communicated by Roseline Periyanayagam.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olano, S. Weighted multiplier ideals of reduced divisors. Math. Ann. 384, 1091–1126 (2022). https://doi.org/10.1007/s00208-021-02306-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02306-3

Navigation